期刊文献+

不锈钢网阴极微生物燃料电池的产电性能研究 被引量:3

Electricity Generation of Microbial Fuel Cell Using Stainless Steel Mesh as Cathode
下载PDF
导出
摘要 构建了一个以曝气池污泥为阳极接种微生物、碳毡为阳极、无任何修饰的不锈钢网为阴极的双室微生物燃料电池.通过输出电压、功率密度以及电化学阻抗等考察了阴极面积对电池产电性能的影响,并对电池的长期运行稳定性进行评价.研究结果表明,不锈钢网作为微生物燃料电池的阴极性能稳定.当不锈钢网面积为2×2 cm^2时,最大输出电压达到0.411 V,功率密度为0.303 W·m^(-2),内阻841Ω,极化内阻80Ω.增大阴极面积至2×4 cm^2,最大输出电压能达到0.499 V,内阻减小至793Ω.不锈钢网价格便宜,具有长期运行稳定性,适宜做MFCs的阴极. In the present work, a dual-chamber microbial fuel cell (MFC) was constructed with aeration tank sludge as an inocu- lure, carbon felt as an anode and stainless steel mesh without any modification as a cathode. The influence of the cathode size was investigated in terms of voltage output, power generation and electrochemical impedance. The long-term durability of the stainless steel mesh cathode was also evaluated. Results showed that the stainless steel mesh exhibited satisfactory long-term durability as MFC cathode. When the stainless steel mesh size was 2 × 2 cm2, the maximum output voltage, power density, the internal resistance and the polarization resistance were 0.411 V, 0.303 W. m-2, 841 Ω and 80 Ω, respectively. Increasing the cathode size to 2 × 4 cm2, the maximum output voltage could reach 0.499 V, and the internal resistance reduced to 793 Ω. These studies demonstrated that the stainless steel mesh was suitable for MFC cathode because of its durability and low price.
出处 《电化学》 CAS CSCD 北大核心 2016年第1期75-80,共6页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.U1261103)资助
关键词 不锈钢网 微生物燃料电池 阴极 产电 稳定性 stainless steel mesh microbial fuel cells cathode electricity generation durability
  • 相关文献

参考文献18

  • 1Xie X, Ye M, Hsu P C, et al. Microbial battery for efficient energy recovery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (40): 15925-15930.
  • 2Lv Z S, Xie D H, Li F S, et al. Microbial fuel cell as a bio- capacitor by using pseudo-capacitive anode materials [J]. Journal of Power Sources, 2014, 246: 642-649.
  • 3Cusick R D, Kiely P D, Logan B E. A monetary compari- son of energy recovered from microbial fuel cells and mi- crobial electrolysis cells fed winery or domestic wastewa- ters[J]. International Journal of Hydrogen Energy, 2010, 35(17): 8855-8861.
  • 4Wang C T, Chen W J, Huang R Y. Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli[J]. International Journal of Hydro- en Ener, 2010. 35(13): 7217-7223.
  • 5Morris J M, Jin S, Wang J Q, et al. Lead dioxide as an al- ternative catalyst to platinum in microbial fuel cells [J]. Electrochemistry Communications, 2007, 9(7): 1730-1734.
  • 6赵煜,李鹏,王晓斌,孙彦平.微生物燃料电池中生物膜成长对电池电化学性能的影响(英文)[J].燃料化学学报,2012,40(8):967-972. 被引量:7
  • 7Wei L L, Han H L, Shen J Q. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12980-12986.
  • 8Freguia S, Rabaey K, Yuan Z, et al. Non-catalyzed cathod- ic oxygen reduction at graphite granules in microbial fuelcells[J]. Electrochimica Acta, 2007, 53(2): 598-603.
  • 9Logen B E, Call D, Cheng S, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42 (23): 8630-8640.
  • 10De Silva Muitoz L, Bergel A, Frron D et al. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode[J]. International Journal of Hydro- gen Energy, 2010, 35(16): 8561-8568.

二级参考文献37

  • 1邹勇进,孙立贤,徐芬,杨黎妮.以新亚甲基蓝为电子媒介体的大肠杆菌微生物燃料电池的研究[J].高等学校化学学报,2007,28(3):510-513. 被引量:17
  • 2Bond D. R. , Holmes D. E. , Tender L. M. , et al.. Science[ J], 2002, 295:483-485.
  • 3Allen R. M. , Bennetto H. P.. Appl. Biochem. Biotechnol. [J] , 1993, 39:27-40.
  • 4Liu H. , Logan B. E.. Environ. Sci. Technol. [J], 2004, 38:4040-4046.
  • 5Schroler U. , Niessen J. , Scholz F.. Angew. Chem. Int. Ed. [J], 2003, 42:2880-2883.
  • 6Rabaey K. , Clauwaert P. , Aelterman P. , et al.. Environ. Sci. Technol. [J] , 2005, 39:8077-8082.
  • 7You S. J. , Zhao Q. L. , Zhang J. N., et al.. J. Power Sources[J], 2006, 162:1409-1415.
  • 8Oh S. E. , Min B. , Logan B. E.. Environ. Sci. Technol. [J], 2004, 38:4900-4904.
  • 9Zou Y. J. , Xiang C. L, Yang L. N. , et al.. Int. J. Hydrogen Energ. [ J ] , 2008, 33 : 4856-4862.
  • 10Rabaey K. , Clauwaert P. , Aelterman P. , et al.. Environ. Sci. Technol. [ J ], 2005, 39:8077-8082.

共引文献21

同被引文献46

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部