期刊文献+

葡萄糖乙酸钠不同基质微生物燃料电池电化学性能对比研究 被引量:6

The Study on Comparison of Electrochemical Performance in Microbial Fuel Cell with Glucose and Sodium Acetate Acting as Substrates
下载PDF
导出
摘要 本文通过接种生活污水处理厂的好氧污泥和厌氧污泥,撘建两个双室微生物燃料电池(MFC,Microbial Fuel Cell),分别以葡萄糖、乙酸钠作为基质,在0.0335 mol·L^(-1)基质浓度下研究不同基质微生物燃料电池的产电性能.研究表明,葡萄糖体系的阳极半电池阻抗为222Ω,乙酸钠体系为213.67Ω,说明两种不同的有机基质对电池内阻无明显影响.葡萄糖、乙酸钠体系的交换电流密度i^0分别为3.463、5.987 mA·m^(-2),COD去除率分别为50.6%、55.8%,库仑效率分别为42.1%、46.2%.葡萄糖为基质时最大输出功率密度为394.2 mW·m^(-2),相应的最大电流密度为1800 mA·m^(-2);乙酸钠为基质时最大输出功率密度为311.9 mW·m^(-2),相应的最大电流密度为1527.5 mA·m^(-2).葡萄糖代谢过程复杂,并不单一,且代谢不彻底,乙酸钠分子简单更容易代谢,因此乙酸钠的库仑效率及COD去除率均高于葡萄糖,由以上数据可以得出葡萄糖为基质的燃料电池产电性能较好. By inoculating aerobic sludge and anaerobic sludge from the sewage treatment plant, two sets of dual-chamber microbial fuel cells (MFCs) were built with either glucose or sodium acetate acting as a substrate. Accordingly, the electrochemical performances of MFCs were explored with the concentration of the substrates being 0.0335 mol. L-1. The results of the comparative study in glucose system and sodium acetate system showed that the impedance values of anodic half cell were 222 l) for glucose and 213.67 fl for sodium acetate, implying no significant effect on the internal resistance in battery with the different substrates. The exchange current densities were 3.463 mA.m-2 and 5.987 mA.m2, while the COD removal rates 50.6% and 55.8% for glucose and sodium acetate, respectively. Furthermore, the coulombic efficiencies reached 42.1% and 46.2% wiht the maximum output power density of 394.2 mW .m-2 and 311.9 mW .m-2 for glucose and sodium acetate, respectively. Since the process of glucose metabolism is more complicated with less complete metabolism as compared with the simpler sodium acetate molecules with more facilitated metabolism, the coulombic efficiency and COD removal rate in sodium acetate system were higher than those in glucose system, which led to better eletricity production capacity.
出处 《电化学》 CAS CSCD 北大核心 2016年第1期81-87,共7页 Journal of Electrochemistry
基金 山西省基金项目(No.2014011014-6)资助
关键词 微生物燃料电池 葡萄糖 乙酸钠 电化学性能 microbial fuel cell glucose sodium acetate electrochemical performance
  • 相关文献

参考文献7

二级参考文献157

  • 1魏海娟,黄继国,贾国元,许文峰.一种快速测定化学需氧量(COD)的方法[J].环境科学与技术,2006,29(1):45-46. 被引量:24
  • 2黄霞,范明志,梁鹏,曹效鑫.微生物燃料电池阳极特性对产电性能的影响[J].中国给水排水,2007,23(3):8-13. 被引量:70
  • 3张生生,朱红,俞红梅,侯俊波,衣宝廉,明平文.碳化钨用作质子交换膜燃料电池催化剂载体的抗氧化性能[J].催化学报,2007,28(2):109-111. 被引量:16
  • 4Aswin, K.M., Orianna, B., Kenneth, H.N., Florian, M., 2008. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioeleetrochemisrty, 72(4): 149-154.
  • 5Barsoukov, E., Macdonald, J.R., 2005. Impedance Spectroscopy Theory, Experiment and Applications, 2nd Ed. Wiley- Interscience, Hoboken, NJ, p.68-73. [doi:10.1002/04717 16243].
  • 6Bennetto, H.P., 1984. Microbial Fuel Cells. Life Chemistry Reports Harwood Academic, London, p.363-453.
  • 7Braeken, L., van der Bruggen, B., Vandecasteele, C., 2004. Regeneration of brewery waste water using nanofiltration. Water Res., 38(13):3075-3082. [doi:10.1016/j.watres.2004. 03.028].
  • 8Freguia, S., Rabaey, K., Yuan, Z., Keller, J., 2007. Noncatalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim. Acta, 53(2):598-603. [doi:10.1016/j.electacta.2007.07.037].
  • 9Freguia, S., Rabaey, K., Yuan, Z., Keller, J., 2008. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res., 42(6-7):1387-1396. [doi:10.1016/j.watres. 2007.10.007].
  • 10. Greenman, J., Galvez, A., Giusti, L., leropoulos, I., 2009. Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzyme Microb. Technol., 44(2): 112-119. [doi:10.1016/j.enzmictec. 2008.09.012].

共引文献213

同被引文献73

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部