期刊文献+

基于电子病历利用支持向量机构建疾病预测模型——以重度急性胰腺炎早期预警为例 被引量:6

Building Disease Prediction Model Using Support Vector Machine——Case Study of Severe Acute Pancreatitis
原文传递
导出
摘要 【目的】为构建疾病预测模型,以重度急性胰腺炎早期预警为例,提出一种基于支持向量机的疾病预测模型构建方法。【方法】基于支持向量机LIBSVM3.11,采用优化后的径向基核函数产生的分类器,同时结合统计学单因素及多因素Logistic回归分析方法,进行特征变量选取,提出一种简单易行的重度急性胰腺炎早期预警模型。【结果】所构建重度急性胰腺炎预警模型准确率达70.37%。最终纳入模型变量包括白细胞计数、血清钙离子、血清脂肪酶、收缩压、舒张压及胸腔积液。【局限】样本量有限,主要采用支持向量机构建疾病预测模型,未来可建立系统,突出临床应用价值。【结论】支持向量机可构建疾病预测的最优模型,进一步建立系统,辅助临床决策。 [Objective] This study developed a disease prediction model based on the support vector machine, using electronic medical records of the severe acute pancreatitis patients. [Methods] We first adjusted the kernel type and parameter values of the support vector machine method to get an optimized prediction model. Then, we combined it with univariable and multivariable logistic regression analysis methods to select features’ variable. Finally, we proposed a simplified early warning model for the severe acute pancreatitis. [Results] The new model’s prediction accuracy rate is 70.37%. Variables used by this model include: white blood cell count, serum calcium, serum lipase, systolic blood pressure, diastolic blood pressure and pleural effusion. [Limitations] Because of the small sample size, we only used this support vector machine method to develop the new disease prediction model. In the future, we will try to establish a larger examination system for the clinical trial. [Conclusions] Support vector machine can help us develop an optimal disease prediction model. A new system based on this model could support our clinical decision makings.
出处 《现代图书情报技术》 CSSCI 2016年第2期83-89,共7页 New Technology of Library and Information Service
基金 教育部人文社会科学研究青年基金项目"基于语义述谓网络属性的多文档自动摘要:以生物医学为例"(项目编号:13YJC870030)的研究成果之一
关键词 支持向量机 重度急性胰腺炎 预警 临床决策 Support Vector Machine Severe acute pancreatitis Early warning Clinical decision
  • 相关文献

参考文献4

二级参考文献24

  • 1何鸣,李国正,袁捷.医学诊断中集成学习技术的研究[J].计算机工程与应用,2006,42(28):218-220. 被引量:5
  • 2周亚东,孙钦东,管晓宏,李卫,陶敬.流量内容词语相关度的网络热点话题提取[J].西安交通大学学报,2007,41(10):1142-1145. 被引量:27
  • 3Cimino,J.J.et al.Theoretical,empirical and practical approaches to resolving the unmet information needs of clinical information sys-tem users[].Proceedings of the AMIA Annual Symposium.2002
  • 4Garg,A.X.et al.Effects of computer-ized clinical decision support systems on prac-titioner performance and patient outcomes:a systematic review[].The Journal of The American Medical Association.2005
  • 5Kohn,L.T.,J.M.Corrigan,,and M.S.Donaldson.To err is human:building a safer health system[]..2000
  • 6Friedman,C.et al.A general natural-language text processor for clinical radiology[].Journal of the American Medical Informatics Association.1994
  • 7Friedman,C.,and G Hripcsak.Natural language processing and its future in medicine[].Academic Medicine.1999
  • 8Friedman,C.,and G Hripcsak.Evaluating natural language processors in the clinicaldomain[].Methods of Information in Medicine.1998
  • 9Friedman,C.et al.Automated encoding of clinical documents based on natural lan-guage processing[].Journal of the American Medical Informatics Association.2004
  • 10.Medical Informatics-Computer applications in Health Care and Biomedicine[].Health Informatics Series.2001

共引文献1332

同被引文献68

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部