期刊文献+

Witt型李超代数的极大根阶化子代数

Maximal root-graded subalgebras of Witt Lie superalgebras
下载PDF
导出
摘要 设W(m,n)是特征p>3的代数闭域上有限维Witt型李超代数.证明了W(m,n)的极大根阶化子代数一定是其极大Z-阶化子代数,从而刻画了W(m,n)的所有极大根阶化子代数.结果有助于理解Witt型李超代数W(m,n)的内在性质. Let W(m, n) be the finite dimensional Witt Lie superalgebras over algebraically closed fields of characteristic p〉 3. We prove that maxmimal root-graded subalgebras of W(m, n) are maximal Z-graded subalgebras of W(m, n). Then we characterize all maximal root-graded subalgebras of W(m, n). It is helpful to further understand the intrinsic properties of Witt Lie superalgebras W(m, n).
出处 《纯粹数学与应用数学》 2016年第1期60-66,共7页 Pure and Applied Mathematics
基金 国家自然科学基金(1171055 11471090 11501151) 黑龙江省自然科学基金(A2015003)
关键词 Witt型李超代数 CARTAN子代数 极大根阶化子代数 Witt Lie superalgebras Cartan subalgebras maximal root-graded subalgebras
  • 相关文献

参考文献11

  • 1Dykin E. Maximal subgroups of classical groups [J]. Trudy Moskov. Mat. Obsc., 1952,30:39-166.
  • 2Dykin E. Semisimple subalgebras of semisimple Lie algebras [J]. Mat. Sb. (N.S.), 1952, 30(72):349-462.
  • 3Shchepochkina I. Maximal subalgebras of matrix Lie superalgebras [J]. In: Leites D. Seminar on Superman- ifolds. Reports of Stockholm University, 1992,32:1-43.
  • 4Elduquq A, Laliena J, Sacristan S. Maximal subalgebras of associative superalgebras [J]. J. Algebra., 2004,275(1) :40-58.
  • 5Elduquq A, Laliena J, Sacristan S. The Kac Jordan superalgebra automorphisms and maximal subalgebras [J]. 3. Pure Appl. Algebra., 2008,212:2461-2478.
  • 6Elduquq A, Laliena J, Sacristan S. Maximal subalgebras of Jordan superalgebras [J]. Proc. Amer. Math. Soc., 2007,135(2) :3805-3813.
  • 7高岩,刘文德.K型李超代数全深度极大子代数[J].哈尔滨师范大学自然科学学报,2009,25(2):34-36. 被引量:3
  • 8白薇,刘文德,董学强.Witt型李超代数偶部的可分解极大阶化子代数[J].数学杂志,2013,33(4):702-708. 被引量:1
  • 9白薇,刘文德,董学强.限制Witt超代数偶部的可约极大阶化子代数[J].数学的实践与认识,2012,24(17):222-227. 被引量:3
  • 10Bai W, Liu W D, Melikyan H. Maximal subalgebras of Lie superalgebras of Cartan type over fields of characteristic zero [J]. J. Algebra, 2014,404:176-199.

二级参考文献21

  • 1A.I. Kostrikin, I. R. Shafarevich. Graded Lie algebras of finite characteristic. Izv. AKad. Nauk, SSSR Ser. Mat. , 1969,33 : 251 -322.
  • 2H Melikyan. Maximal subalegebra of simple modular Lie algebras. J. Algebra,2005,284: 824-856.
  • 3W. - D. Liu and Y. - Z. Zhang. Modular He superalgebra. Science, 2004.
  • 4A. I. Maltsev. On semi - simple subgroups of Lie groups. Bull. Acad. Sci. URSS Ser. Math. ,1944,8: 143-174.
  • 5V. V. Morozov. The Proof of the regularity theorem. Uspekhi Math. Nauk,1956,11:191 -194.
  • 6Maltsev A I. On semi-simple subgroups of Lie groups[J]. Bull Acad Sci URSS Ser Math; Izv Akad Nauk SSSR, 1944, 8:143-174 (in Russian).
  • 7Dynkin E B. Semisimple subalgebras of semisimple Lie algebra[J]. Mat Sb (N.S.), 1952, 30(72): 349-462; transl.:Amer Math Soc Transl, 1957, 6(2): 111-244.
  • 8Seitz G M. The maximal subgroups of classical algebraic groupsM. Mem Amer Math Soc, 1987, 67: 365.
  • 9Seitz G M. Maximal subgroups of exceptional algebraic groups[M]. Mere Amer Math Soc, 1991, 90: 441.
  • 10Melikyan H. On a maximal subalgebras of the simple Lie algebras of'Caftan type[M].In: XVI All-Union Algebraic Conf, Leningrad, 1981, 107 (in Russian).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部