期刊文献+

关于预可解子范畴的同调维数

Homological dimensions with respect to preresolving subcategories
下载PDF
导出
摘要 引入了关于阿贝尔范畴中预可解子范畴的同调维数,讨论了这些同调维数的一些性质.并进一步给出了R模范畴中的X-Gorenstein投射维数和X-Gorenstein内射维数的定义及运用. This paper introduce the homological dimensions with respect to preresolving subcategories of an abelian category, discuss some properties about the homological dimensions. Next give the difinition and ues about the X-Gorenstein projective dimension and X-Gorenstein injective dimension of R-modules.
出处 《纯粹数学与应用数学》 2016年第1期67-74,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11361051)
关键词 预可解子范畴 同调维数 生成子 preresolving subcategories homological dimension generator elementary method conjecture
  • 相关文献

参考文献9

  • 1Christensen L W, Iyengar S. Gorenstein dimension of module over homomorphism [J]. J. pure Appl. Algebra, 2009,208:177-188.
  • 2Sather-Wagstaff S, Sharif T, White D. Stablity of Gorenstein categories [J]. J. Lond. Math. Soc., 2008,7:491- 606.
  • 3Huang Z Y. Proper resolutions and Gorenstein categories [J]. J. Algebra, 2009,393:142-169.
  • 4Holm H. Gorenstein homological dimensions [J]. J. pure Appl. Algebra, 2004,189(1):167-193.
  • 5Huang Z Y. Homological dimensions relative to preresolving subcategories [J]. Kyoto J. Math., 2014,54:727.
  • 6Auslander M, Bridger M. Stable Module Theory [M]. American Mathematical Society: Providence Rbode Island, 1969.
  • 7Enochs E E, Jenda O M G. Relative HomologicM Algebra [M]. De Gruyter Expositions in Mathematics. Berlin: Walter de Gruyter, 2000.
  • 8Enochs E E, Jenda O M G. Gorenstein injective and projictive module [J]. Math. Z., 1995,220:611-633.
  • 9Christensen L W. Gorenstein Dimension [M]. Lect. Notes in Math. 1747. Berlin: Springer-Verlag, 2000.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部