期刊文献+

时效工艺对2297合金腐蚀行为的影响 被引量:2

Effects of Aging Treatment on Corrosion Behavior of 2297 Aluminum Alloy
下载PDF
导出
摘要 采用恒温浸泡方法、金相和透射电镜技术研究2297合金经不同的时效工艺后的晶间腐蚀和剥落腐蚀行为。研究结果表明:时效时间越长,2297合金的腐蚀敏感性越大;在相同时效时间上,T8态合金的腐蚀敏感性要高于T6态合金的腐蚀敏感性。随着时效时间的延长,合金晶界的PFZ宽度降低,析出相发生粗化,并由断续排列变为连续排列。晶界析出相的特征是影响2297合金腐蚀敏感性的主要因素。粗大的析出相,并呈连续分布,合金的腐蚀敏感性越大;细小的析出相,并呈断续分布,合金的腐蚀敏感性越小。 The intergranular corrosion and exfoliation corrosion properties of 2297 aluminum alloy were investigated at different aging treatment using constant temperature immersion corrosion method, optical microscopy and transmission electron microscopy. The results show that the corrosion sensibility of 2297 aluminum alloy increases gradually with the increase of aging time. In the same aging time, the corrosion sensitivity of T8 state alloy is higher than that of T6 state alloy. With the increase of aging time, the width of PFZ in grain boundary reduced, the precipitated phase coarsened, and the feature of precipitated phase would change from intermittent distribution to continuous distribution. The feature of grain boundary precipitated phase is the major factor in affecting the corrosion sensitivity of 2297 aluminum alloy. Coarse precipitation phase with continuous distribution can increase the corrosion sensitivity of alloy, fine precipitation phase with intermittent distribution can decrease the corrosion sensitivity of alloy.
出处 《铝加工》 CAS 2016年第1期4-10,共7页 Aluminium Fabrication
关键词 2297铝合金 时效工艺 晶间腐蚀 剥落腐蚀 2297 AI ahoy aging treatment intergranular corrosion exfoliation corrosion
  • 相关文献

参考文献18

二级参考文献42

  • 1Yunqing Li (Department of Planning and Developmet, State Nonferrous Metals Industry Administration, Beijing 100814, China).Microstructure and Strain Fatigue Dislocation Structure of 7075-RRA Aluminum Alloy[J].Rare Metals,2001,20(1):52-57. 被引量:2
  • 2顾景诚.铝合金时效过程[J].轻合金加工技术,1985,(3):25-28.
  • 3[1]Grimes R, Cornish A J, Miller W S, et al. Aluminium-lithium based alloys for aerospace application[J].Metals and Materials, 1985, 1(6): 357-363.
  • 4[2]Lavernia E J, Grand N J. Aluminum-lithium alloys[J]. Journal of Materials Science, 1987, 22(5): 1521- 1529.
  • 5[11]Buchheit R G, Morran J P, Stoner G E. Localized corrosion behavior of alloy 2090-the role of microstructural heterogeneity[ J ]. Corrosion, 1990, 46(8): 610- 617.
  • 6[12]Kertz J E, Gouma P I, Buchheit R G. Localized corrosion susceptibility of Al-Cu-Li-Mg-Zn alloy AF/C458 due to interrupted quenching from solutionizing temperatures[J]. Metall Mater Trans A, 2001, 32(10): 2561-2573.
  • 7[13]Buchheit R G, Moran J P, Stoner G E. Electrochemical behavior of the T1 (Al2CuLi) intermetallic compound and ite role in localized corrosion of Al-2%Li-3%Cu alloys[J]. Corrosion, 1994, 50(2): 120-130.
  • 8[14]Kumai C, Kusinski J, Thomas G. Influence of aging at 200 ℃ on the corrosion resistance of Al-Li-Cu alloy[J]. Corrosion, 1989, 45(4): 294 - 302.
  • 9[15]Wall F D, Stoner G E. The evaluation of the critical electrochemical potentials influencing environmentally assisted cracking of Al-Li-Cu alloys in selected environments[J]. Corrosion Science, 1997, 39(5): 835-853.
  • 10[3]Tsai T C, Chang J C, Chuang T H. Stress corrosion cracking of super-plastically formed 7475 aluminum alloy [J]. Metall. Mater. Trans. A, 1996, 28A (10): 2113-2121.

共引文献85

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部