期刊文献+

基于改进ICA-R算法的多用户信号盲提取 被引量:2

Blind Extraction of Multi-User Signals based on Modified ICA-R Algorithm
下载PDF
导出
摘要 针对单通道通信系统中多用户信号盲源分离(Blind Source Separation,BSS)时出现的干扰问题,提出了一种改进的带参考向量的独立成分分析(Independent Component Analysis with Reference,ICA-R)算法。该算法通过将接近性度量函数的倒数添加到对比函数中,从而得到一个新的对比函数,然后利用拉格朗日乘子法得到最优的权向量,最后,通过线性转换提取出多用户信号。提出的改进的参考独立分量分析算法与先进的ICA-R方法相比具有更快的收敛速度和更高的提取精度。仿真结果表明,该算法能够有效地提取出多用户信号,并且提取精度高,算法的鲁棒性好。 Aiming at the interference of muhi-user signals BSS (Blind Source Separation) in single-channel communication system, a modified ICA-R (Independent Component Analysis with Reference) algorithm with reference vector is proposed. By adding the reciprocal of similarity measure to the contrast function, a novel contrast function is derived, and then the optimal weighted vector acquired with Lagrange multiplier method, and finally multi-user signals extracted via a special linear transformation. Compared with state-of-the-art ICA-R methods, the proposed modified ICA-R algorithm enjoys a faster convergence speed and higher extraction quality. Simulation results indicate that the proposed algorithm could effectively extract the multi-user signals, and is of fairly high extraction precision and robustness.
出处 《通信技术》 2016年第3期282-285,共4页 Communications Technology
基金 国家自然科学基金(No.61401401) 博士后特别资助基金(No.2015T80779) 博士后资助基金(No.2014M561998)~~
关键词 单通道 多用户信号 带参考信号的独立成分分析 对比函数 拉格朗日乘子法 single-channel multi-user signals independent component analysis with reference contrast function Lagrange multiplier method
  • 相关文献

参考文献8

  • 1ZHANG J, WANG K M, LUO Z Q and QIN P C. Blind Adaptive Fresh Filtering for Signal Extraction [ J ]. IEEE Transactions on Signal Processing, 1999,47 (5) : 1397-1402.
  • 2Gelli G, Paura L and Tulino A M. Cyclostationarity- based Fihering for Narrowband Interference Suppression in Direct - Sequence Spread - Spectrum Systems [ J ]. IEEE Journal on Selected Areas in Communications, 1998,16(9) :1747-1755.
  • 3Ngan L Y,Shan Ou-yang, Ching P C. Reduced-Rank Blind Adaptive Frequency-Shift Filtering for Signal Extraction [ C ]//Proceedings Of 4th IEEE International Conference On Acoustics, Speech and Signal Processing ( ICASSP' 04 ). Canada : IEEE, 2004:653-656.
  • 4Jutten C, Herauh J. Blind Separation of Sources, Part I : An Adaptive Algorithm based on Neuromimetic Architecture [ J ]. Signal Processing, 1991,24 ( 1 ) : 1 - 10.
  • 5余先川,胡丹.盲源分离理论与应用[M].北京:科学出版社.2011:1.10.
  • 6LU W, Rajapakse J C. Approach and Applications of Constrained ICA [ J ]. IEEE Transactions On Neural Networks, 2005, 16(1) :203-212.
  • 7LU W, Rajapakse J C. ICA with Reference[J]. Neurocomputing, 2006, 69(16-18) :2244-2257.
  • 8杨柳,张杭.通信中的盲源分离问题及解决方案探讨[J].通信技术,2014,47(1):1-6. 被引量:3

二级参考文献12

共引文献30

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部