期刊文献+

基于事件-时间关联模型的话题跟踪研究 被引量:3

Research on topic tracking based on event-time relation model
下载PDF
导出
摘要 针对话题跟踪的任务是从时序新闻报道流中实时识别和挖掘相关于特定新闻话题的报道,本文提出一种事件-时间关联模型(EventTime Relation Model,ETRM)用来展开话题跟踪研究。ETRM将相关报道的时间属性引入向量空间模型,话题跟踪过程中将话题与相关报道相同特征项的时间相关度应用于相关性判定机制,同时基于时间的分布属性调整特征向量的权重分配,实现话题模型的自适应学习更新。实验采用DET曲线评测系统性能,结果显示相比于传统的话题模型,ETRM能够更加准确地追踪到话题焦点演化趋势,有效提高了话题跟踪系统的性能。 This paper proposes an Event-Time Relation Model( abbr. ETRM) to study topic tracking for its task that is to identify and mining subsequent on-topic stories in the temporal story stream. The ETRM introduces the time property of the story to the vector space model,apply time correlations of same feature to the correlation decision mechanism in topic tracking process,adjusting feature vector weight allocation based on time property to implement subject model of adaptive learning at the same time. Experiment adopts DET curve performance evaluation system,the results show that ETRM can more accurately track the topic focus of evolution trend compared with the traditional model of subject,effectively improve the performance of topic tracking system.
出处 《智能计算机与应用》 2016年第1期26-30,共5页 Intelligent Computer and Applications
关键词 话题跟踪 事件-时间关联模型 时间相关度 DET曲线 topic track event-time relation model time correlation DET curve
  • 相关文献

参考文献11

  • 1骆卫华 刘群 程学旗 孙茂松 陈群秀.话题检测与跟踪技术的发展与研究[A].孙茂松,陈群秀.全国计算语言学联合学术会议(JSCL-2003)论文集[C].北京:清华大学出版社,2003.560-566.
  • 2ALLAN J. Topic detection and tracking: Event-based Information Organization[M]. NewYork : Kluwer Academic Publishers, 2002.
  • 3YANG Y, CARBONELL J G , BROWN R D. Learning approaches for detecting and tracking news events[J]. 1999, 14(4) :32 - 43.
  • 4仓玉,洪宇,姚建民,朱巧明.基于时序话题模型的新事件检测[J].智能计算机与应用,2011,1(1X):74-78. 被引量:3
  • 5MARTIN A, DODDINGTON G , KAMMETAL T. The DET Curve in assessment of detection task performance[ C] //:Proceedings of the Fifth European Conference on Speech Comunication and Technology, EUROSPEECH 1997. Rhodes, Greece:ACM, 1997:1895 - 1898.
  • 6LAVRENKO V, ALLAN J, DEGUZMAN E, et al. Relevance models for topic detection and tracking[C] //Proceedings of HLT2002 on Human Language Technology Research. San Francisco:ACM, 2002:115 - 121.
  • 7宋丹,王卫东,陈英.基于改进向量空间模型的话题识别与跟踪[J].计算机技术与发展,2006,16(9):62-64. 被引量:23
  • 8ALLAN J, LAVRENKO V, FREY D , et al. UMass at TDT 2000[C] // Proceedings of Topic Detection and Tracking Workshop. USA: National Institute of Standard and Technology, 2000:109 - 115.
  • 9ALLAN J, CARBONELL J , DODDINGTON G, et al. Topic detection and tracking pilot study: Final report[ C] //Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. Virginia: DARPA, 1998: 194- 218.
  • 10洪宇,张宇,刘挺,李生.话题检测与跟踪的评测及研究综述[J].中文信息学报,2007,21(6):71-87. 被引量:153

二级参考文献83

共引文献171

同被引文献27

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部