期刊文献+

基于多准则寻优策略的差分进化算法 被引量:3

Differential Evolution Algorithm Based on Multi-criteria Optimization Strategy
下载PDF
导出
摘要 在差分进化算法的基础上,提出一种基于多准则寻优策略的改进差分进化算法。该算法可以动态调整变异因子和交叉概率,基于文中提出的多准则寻优策略,通过个体适应度、个体间距离等评价指标判断个体的优劣程度,并且可以降低种群的高密度程度,增强种群多样性。这种判断机制可以有效避免种群过早收敛,易陷入局部最优的风险。通过具体的测试函数对算法进行测试,并与标准差分进化算法进行比较,结果显示算法寻优效果较好,可以较快地得到全局最优解。 Based on differential evolution algorithm,this paper proposed an improved differential evolution algorithm with multi-criteria optimization strategy.This algorithm can adjust the mutation and crossover parameters dynamically,and evaluate individuals' grade of excellence with the evaluation indexes like individual fitness and distance between individuals on the basis of the proposed multi-criteria optimization strategies.It can also reduce the degree of population density and enhance population diversity.Although this evaluation mechanism can effectively avoid premature convergence of population,it tends to result in local optimum risk.After it was tested by some test functionsand compared with standard differential evolution algorithm,this improved algorithm was found to have the best optimization effect,being able to obtain the global optimal solution quickly.
作者 陈岩 王宗宪
出处 《山东科技大学学报(自然科学版)》 CAS 2016年第1期102-108,共7页 Journal of Shandong University of Science and Technology(Natural Science)
关键词 多准则寻优 差分进化算法 启发式算法 个体适应度 multi-criteria optimization differential evolution algorithm heuristic algorithm imdividual fitness
  • 相关文献

参考文献17

  • 1STORN R,PRICE K. Differential evolution.. A simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997,11 : 341-359.
  • 2谢晓锋,张文俊,张国瑞,杨之廉.差异演化的实验研究[J].控制与决策,2004,19(1):49-52. 被引量:70
  • 3吴亮红,王耀南,袁小芳,周少武.自适应二次变异差分进化算法[J].控制与决策,2006,21(8):898-902. 被引量:80
  • 4BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. Evolutionary Computation, IEEE Transactions on, 2006,10(6) : 646-657.
  • 5刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 6王培崇,贺毅朝,钱旭.基于两种进化模式的双种群协作差分演化算法[J].计算机工程与应用,2008,44(25):60-64. 被引量:9
  • 7QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optirnization[J]. IEEE Transactions on Evolutionary Computation, 2009,13 (2) : 398-417.
  • 8王培崇,钱旭,王月,虎晓红.差分进化计算研究综述[J].计算机工程与应用,2009,45(28):13-16. 被引量:19
  • 9DAS S,SUGANTHAN P N. Differential evolution:A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011,15 ( 1 ) : 4-31.
  • 10MALLIPEDDI R,SUGANTHAN P N,PAN Q K,et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011,11(2) :1679-1696.

二级参考文献148

共引文献460

同被引文献16

  • 1Hol and J H.Adaption in natural and artificial systems[M].The University of Michigan Press,975:1-50.
  • 2Storn R,Price K.Differential evolution:a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of G local Optimization,1997,11(4):341-359.
  • 3Brest J,Greiner S,Boskovic B,et al.S elf adapting control parameters in diff-erential evolution:a comparative study on numerical benchmark problems[J].Journal of IEEE Trans Evolutionary Computation,2006,10(6):646-657.
  • 4Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor:Michigan Press,1975:1-50.
  • 5Yang Q W,Jiang J P,Qu Z X,et al.Improving genetic algorithms by using logic operation[J].Control and Decision,2002,15(4):520-512.
  • 6Peter Merz,Bernd Freisleben.Memetic Algorithms and the Fitness Landscape of the Graph Bi Partitioning Problem.PPSN VLNCS1998:765-774.
  • 7Amin Nobakhti,Hong Wang.A simple self-adaptive differential evolution algorithm with application on the ALSTOM gasifier[J].Applied Soft Computing,2008,8:350-370.
  • 8高岳林,刘军民.差分进化算法的参数研究[J].黑龙江大学自然科学学报,2009,26(1):81-85. 被引量:30
  • 9谭跃,谭冠政.混沌局部搜索策略的差分进化算法[J].重庆工学院学报(自然科学版),2009,23(5):64-68. 被引量:2
  • 10吴孟丽,王立文.一种新型并联机器人的静力学优化设计[J].中国机械工程,2010,21(19):2308-2312. 被引量:7

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部