期刊文献+

OT(X,Y;θ)的一类特殊子半群Me及其极大(小)元

A Sub-semigroup Meof OT(X,Y;θ)and Its Maximal(Minimal)Elements
原文传递
导出
摘要 由于保序夹心半群OT(X,Y;θ)的幂等元集E(OT(X,Y;θ))不构成子半群,对E(OT(X,Y;θ))加某些限制条件后,得到幂等元集E(OT(X,Y;θ))的真子集Me,证明了Me是半群OT(X,Y;θ)的子半群,讨论了Me在自然偏序下的一些结论,此外,还描述了子半群Me的极大(极小)元与覆盖元。 In this paper, we discuss a subset of the finite preserving order sandwich semigroup's idempotent set. Because the idemp otent E(OT(X,Y;θ))of the semigroup OT(X,Y;θ) does not constitute a subsemigroup, with some limitations, the subset M, of idempotent set is a sub-semigroup, under natural order of finite order preserving sandwich semigroup OT(X,Y;θ) of sub-semigroup Ms. At the same time, the maximal (minimal) elements and the covering elements of the sub semigroup Me are described.
作者 莫贵圈
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期80-84,共5页 Journal of Chongqing Normal University:Natural Science
基金 贵州师范学院应用数学重点支持学科项目
关键词 子半群Me 自然偏序 极大元 极小元 覆盖元 sub-semigroup M, natural order the maximal elements the minimal elements the covering elements
  • 相关文献

参考文献2

二级参考文献20

  • 1马敏耀,张传军,林屏峰.有限夹心半群T(X,Y;θ)的正则性与Green关系[J].贵州师范大学学报(自然科学版),2007,25(1):81-84. 被引量:2
  • 2Vagner V. V., Generalized groups, Doklady Akademii Nauk SSSR, 1952, 84:1119-1122 (in Russian).
  • 3Hartwig R., How to partially order regular elements, Math. Japon, 1980, 35(1): 1-13.
  • 4Nambooripad K. S. The natural partial order on a regular semigroup, Proc. Roy. Soc. Edinburgh, 1980, 23: 249-260.
  • 5Mitsch H., A natural partial order for semigroups, Proc. Amer. Math. Soc., 1986, 97: 384-388.
  • 6Kowol G., Mirsch H., Naturally ordered transformation semigroups, Monatsh Math., 1986, 102: 115-138.
  • 7Paula M., Marques-Smith O., Sullivan R. P., Partial orders on transformations semigroups, Monatsh Math., 2003, 140: 103-118.
  • 8Sullivan R. P., Partial orders on transformation semigroups, Proc. Roy. Soc, Edinburgh Sec. A, 2005, 135: 413-437.
  • 9Pei H. S., Equivalences, a-semigroups and a-congruences, Semigroup Forum, 1994, 49:49 58.
  • 10Sun L., Pei H. S., Cheng Z. X., Naturally ordered transformation semigroups preserving an equivalence, Bull. Austral. Math. Soc., 2008, 78: 117-128.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部