摘要
由于保序夹心半群OT(X,Y;θ)的幂等元集E(OT(X,Y;θ))不构成子半群,对E(OT(X,Y;θ))加某些限制条件后,得到幂等元集E(OT(X,Y;θ))的真子集Me,证明了Me是半群OT(X,Y;θ)的子半群,讨论了Me在自然偏序下的一些结论,此外,还描述了子半群Me的极大(极小)元与覆盖元。
In this paper, we discuss a subset of the finite preserving order sandwich semigroup's idempotent set. Because the idemp otent E(OT(X,Y;θ))of the semigroup OT(X,Y;θ) does not constitute a subsemigroup, with some limitations, the subset M, of idempotent set is a sub-semigroup, under natural order of finite order preserving sandwich semigroup OT(X,Y;θ) of sub-semigroup Ms. At the same time, the maximal (minimal) elements and the covering elements of the sub semigroup Me are described.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2016年第2期80-84,共5页
Journal of Chongqing Normal University:Natural Science
基金
贵州师范学院应用数学重点支持学科项目
关键词
子半群Me
自然偏序
极大元
极小元
覆盖元
sub-semigroup M,
natural order
the maximal elements
the minimal elements
the covering elements