期刊文献+

一类Burgers-Constantin-Lax-Majda方程的奇异性

The Singularity Formation for Burgers-Constantin-Lax-Majda Equation
原文传递
导出
摘要 研究了一类广义的Burgers-Constantin-Lax-Majda方程的奇异性问题,这类方程同时具有Burgers方程和Constantin-Lax-Majda方程的许多性质,同时带有非局部项uHu(其中H表示Hilbert变换),证明了这类方程在非负的初始条件下,其解在有限时间内是爆破的,这些结果在很大程度上推广和延伸了先前的相关结果。 This paper is concerned with the singularity for a class oF generalized Burgers-Constantin:Lax-Majda equation, which has been proposed as a model which shares many properties of the Burgers equation and Constantin-Lax-Majda equation, meanwhile the model has a nonlocal flux of the form uHu where H is the Hilbert transform. We prove the blow up in finite time for a class of non- negative initial data; the main results improve and extend the ones in the previous works to a large extent.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期90-94,共5页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11371042) 青年科学基金资助项目(No.201207)
关键词 Burgers-Constantin-Lax-Majda方程 有限时间奇异性 Hilbert变换 非线性非局部系统 Burgers-Constantin-Lax-Majda equations finite time singularity Hilbert transform nonlinear nonlocal system
  • 相关文献

参考文献11

  • 1Constantin P, Lax P D, Majda A J. A simple one-dimen- sional model for the three-dimensional vorticity equation [J]. Comm Pure Appl Math, 1985 (38) : 715-724.
  • 2De Gregorio S. On a one-dimensional model for the three- dimensional vorticity equation[J]. J Statist Phys, 1990,59 (5/6) : 1251-1263.
  • 3De Gregorio S. A partial differential equation arising in a 1D model for the 3D vorticity equation[J]. Math Meth Ap- pl Sci;1996 (19) :1233-1255.
  • 4Okamoto H,Sakajo T, Wunsch M. On a generalization of the Constantin-Lax-Majda equation[J]. Nonlinearity, 2008, 21(10) :2447-2461.
  • 5Antonio C,Diego C,Fontelos M A. Integral inequalities for the Hilbert transform applied to a nonlocal transport equa- tion[J]. J Math Pures Appl, 2006,86 (6) : 529-540.
  • 6Cordoba A,Cordoba D,Fontelos M A. Formation of singu- larities for a transport equation with nonlocal velocity[J].Ann Math, 2005,162 (3) : 1377-1389.
  • 7Sakajo T. Blow-up solutions of the Constantin-Lax-Majda equation with a generalized viscosity term[J]. J Math Sci Univ Tokyo, 2003,10(1) .. 187-207.
  • 8Kiselev A,Nazarov F,Shterenberg R. Blow up and regular- ity for fraetal Burgers equation[J]. Dyn Partial Differ Equ, 2008,5 (3) : 211-240.
  • 9Angel C. Diego C, Francisco G. Singularity formations for a surface wave model[J]. Nonlinearity, 2010, 23 (11) : 2835- 2847.
  • 10Hur V M. On the formation of singularities for surface water waves[J]. Communications on Pure and Applied A- nalysis, 2012,11 (4) : 1465-1474.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部