摘要
本文主要讨论了Lévy过程驱动的随机微分方程解的存在唯一性.当驱动随机微分方程的Lévy过程的跳的跳率不为常数,而是一个与系统相关的函数时,方程在一个可分Banach空间即2次M型空间中,系数在一定条件下解的存在性和唯一性.
The existence and uniqueness was discussed, that of the solutions for stochastic differential equations driven by Levy process. The result show that the case that the jumps of the Lrvy process are not constant and depend on the solution of the stochastic system. The main results are obtained in the separability type Banaeh space when the coefficient of the stochastic differential equations satisfy certain conditions.
出处
《湖南科技大学学报(自然科学版)》
CAS
北大核心
2016年第1期118-121,共4页
Journal of Hunan University of Science And Technology:Natural Science Edition
基金
湖南省自科基金资助项目(12JJ4001
14JJ7047)
湖南科技大学校级教改项目(G31416)
关键词
LEVY过程
M型空间
解的存在性
解的唯一性
Levy process
Mtype Banach space
the existence and uniqueness of the solutions