期刊文献+

一类Lévy过程驱动的随机微分方程在可分Banach空间的解的存在唯一性

The existence and uniqueness of the solutions for stochastic differential equations driven by Lévy process
原文传递
导出
摘要 本文主要讨论了Lévy过程驱动的随机微分方程解的存在唯一性.当驱动随机微分方程的Lévy过程的跳的跳率不为常数,而是一个与系统相关的函数时,方程在一个可分Banach空间即2次M型空间中,系数在一定条件下解的存在性和唯一性. The existence and uniqueness was discussed, that of the solutions for stochastic differential equations driven by Levy process. The result show that the case that the jumps of the Lrvy process are not constant and depend on the solution of the stochastic system. The main results are obtained in the separability type Banaeh space when the coefficient of the stochastic differential equations satisfy certain conditions.
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2016年第1期118-121,共4页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 湖南省自科基金资助项目(12JJ4001 14JJ7047) 湖南科技大学校级教改项目(G31416)
关键词 LEVY过程 M型空间 解的存在性 解的唯一性 Levy process Mtype Banach space the existence and uniqueness of the solutions
  • 相关文献

参考文献11

  • 1Da Prato G, Zabczy k J. Stochastic equations in infinite dimensions[ M]. Cambridge:Cambridge Univ Pr, 1992.
  • 2Liu K. Stability of infinite dimensional stochastic differential equations with applications[ M ]. Chapman:CRC Press, 2006.
  • 3Situ R. Theory of stochastic differential equations with jumps and applications: mathematical and analytical techniques with applications to engineering[ M]. London:Springer Veflag, 2005.
  • 4Mandrekar V, Rttdiger B. Existence and uniqueness of path wise solutions for stochastic integral equations driven by non Gaussian noise on separable Banach spaces [ J ]. Stochastics An International Journal of Probability & Stochastic Processes, 2006,78(4) :189 -212.
  • 5Hansenblas E. Spdes driven by poisson random measure with non lipschitz coefficients: existence results [ J]. Probability Theory and Related Fields, 2007,137 ( 1 ) : 161 - 200.
  • 6Fournier N. Jumping SDEs: absolute continuity using monotonicity[ J ]. Stochastic Processes and Their Applications, 2002,98 (2) :317 -330.
  • 7Foumier N. Smoothness of the law of some one - dimensional jumping SDEs with non - constant rate of jump [ J ]. Electronic Journal of Probability, 2008,13 : 135 - 156.
  • 8Jeong J M. Retarded functional differential equations with L 1 -valued controller[ J ]. Funkcial. Ekvac, 1993,36:71 -93.
  • 9Protter P E. Stochastic integration and differential equations[ M ]. London:Springer Verlag, 2004.
  • 10Applebaum D. I_vy processes and stochastic calculus[ M ]. Cambridge: Cambridle Univ Pr, 2004.

二级参考文献13

  • 1YUENKC,GUOJ.Ruinprobabilitiesfortime-correlatedclaimsinthecompoundbinomialmodel[J].Insurance:MathEco,2001,29(1):47-57.
  • 2GERBERHU.Mathematicalfunwiththecompoundbinomialprocess[J].AstinBull,1988,18(2):161-168.
  • 3CHENGS,GERBERHU,SHIUESW.Discountedpribabilitiesandruintheoryinthecompoundbinomialmodel[J].Insur-ance:MathEco,2000,26(2-3):239-250.
  • 4GONGR,YANGX.Thenitetimesurvivalprobabilitiesinthefullydiscretecompoundbinomialmodel[J].ChinJApplProbabStatist,2001,17(4):65-99.
  • 5TANJY,YANGXQ.Thedividengproblemsforcompoundbinomoalmodelwithstochasticreturnoninvestments[J].Nonlin-earMathforUncertaintyAppl,2011,100:239-246.
  • 6TANJY,YANGXQ.Thecompoundbinomialmodelwithrandomizeddecisionsonpayingdividends[J].Insurance:MathEco,2006,39(1):1-18.
  • 7DEFINETTIB.Suunimpostazionealternativadellateoriacollettivadelrischio[J].TransactionsoftheXVthInternationalCon-gressofActuaries,1957,2:433-443.
  • 8LINXS,WILLMOTGE,DREKICS.Theclassicalriskmodelwithaconstantdividendbarrier:AnalysisoftheGerber-Shiudiscountedpenaltyfunction[J].Insurance:MathEco,2003,33(3):551-566.
  • 9LINXS,PAVLOVAKP.ThecompoundPoissonriskmodelwithathresholddividendstrategy[J].Insurance:MathEco,2006,38(1):57-80.
  • 10ZHOUJM,OUH,MOXY,etal.ThecompoundPoissonriskmodelperturbedbydiusionwithdouble-thresholddividendbarrierstoshareholdersandpolicyholders[J].JNaturSciHunanNormUniv,2012,35(6):1-13.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部