期刊文献+

语义增强的科技创新内容表征研究 被引量:6

Research on the Representation of Technical Innovation Content with Enhanced Semantics
下载PDF
导出
摘要 [目的/意义]随着计算机信息处理技术以及文本数据挖掘技术的发展,研究人员开始利用语义分析技术深入分析科技文献文本数据,识别出科技文献中的科技创新内容,以期为科技创新和科技决策提供支持和帮助。[方法/过程]文章通过分析科技创新内容结构分布特征,以句子为最小标引粒度,利用Keygraph算法抽取出科技文献摘要中的关键词进行科技创新内容特征选择,基于SVM的语义角色标注技术完成科技创新内容的语义表征。[结果/结论]实验结果表明,语义增强的科技创新表征方法可以基本实现科技创新内容的语义标引。 [ Purpose/significance ] With the development of computer information processing technology and text mining tech- nology, researchers use semantic analysis method to analyze scientific literature data and identify technical innovation content in the scientific literature in order to provide support and assistance for technical innovation and technical decision-making. [ Method/ process ] By analyzing the distribution structure of technical innovation content, the paper takes sentence as the minimum indexing granularity, and uses Keygraph algorithm to extract the keywords in the abstract of scientific literature for the selection of character- istics of technical innovation content. Based on the semantic role labeling technique of SVM, the paper accomplishes the semantic representation of technical innovation content. [ Result/conclusion] The experimental results show that technical innovation repre- sentation method with enhanced semantic can basically achieve semantic indexing of technical innovation content.
出处 《情报理论与实践》 CSSCI 北大核心 2016年第3期73-79,共7页 Information Studies:Theory & Application
基金 教育部人文社会科学研究基金青年项目"长句检索中信息查询扩展研究"(项目编号:12YJC870001) 山东理工大学人文社会科学发展基金项目的研究成果之一
关键词 语义增强 科技创新 算法 支持向量机 semantic enhancement technical innovation algorithm SVM
  • 相关文献

参考文献17

  • 1HOHENSTEIN U, PLESSER V. Semantic enrichment : a first step to provide database interoperability [ C ] //Proc of the Workshop Fderierte Datenbanken, Magdeburg, 1996 : 3-17.
  • 2张泽宇,李莉,谭凤,晏萍丽.基于语义的文档标注方法研究[J].计算机工程与科学,2013,35(9):151-156. 被引量:8
  • 3熊皓,刘群,吕雅娟.联合语义角色标注和指代消解[J].中文信息学报,2013,27(6):58-68. 被引量:6
  • 4TAMILIN A, MAGNINI B, SERANI L Context-driven semantic enrichment of italian news archive [ C ] // Proceedings of the 7th international conference on The Semantic Web: research and Applications, Part I, 2010: 364-378.
  • 5杨选选,张蕾.基于语义角色和概念图的信息抽取模型[J].计算机应用,2010,30(2):411-414. 被引量:19
  • 6BEEFERMAN D, BERGER A, LAFFERTY J. Statistical mod- els for text segmentation [ J ]. Machine learning, 1999, 34 (1-3) : 177-210.
  • 7OHSAWA Y, BENSON N E, YACHIDA M. KeyGraph: auto- matic indexing by graph based on building con- struction metaphor [ C ] //Research and Technology Advances in Digital Libraries. Proceedings. IEEE International Forum on. IEEE, 1998: 12-18.
  • 8GUO Y, SIL1NS I, REICHART R, et al. CRAB reader: a tool for analysis and visualization of argumentative zones in scientific litera- ture [ C]. COILING 2012, 24th International Conference on Com- putational Linguistics. Mumbai, India: Indian Institute of Technolo- gy Bombay, 2012. 183-190.
  • 9HIROHATA K, OKAZAKI N, ANANIADOU S, et al. Identif- ying sections in scientific abstracts using conditional random fields [ C] //Proceedings of the 3rd International Joint Confer- ence on Natural Language Processing. Hyderabad, India: Asian Federation of Natural Language Processing , 2008: 381-388.
  • 10BASILI R, MOSCHITTI A, PAZIENZA M T. A text classifier based on linguistic processing [ EB/OL]. [2015-07-22] ht- tp: //citeseerx. ist. psu. edu/viewdoc/download? doi = 10. 1. 1.39. 5608 &rep = repl &type = pdf.

二级参考文献34

共引文献24

同被引文献183

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部