期刊文献+

铜/金纳米涂层在温度梯度下的分子动力学模拟 被引量:2

Properties of Cu/Au Thin Films Under Temperature Gradient:a Molecular Dynamics Study
原文传递
导出
摘要 本文采用分子动力学模拟方法溅射制备和理想化建模得到调制周期为1.8 nm铜/3.6 nm金的纳米涂层样本,并研究涂层结构在温度梯度作用下的相关特性。结果表明不同纳米涂层在过渡界面处均存在共格生长界面层结构,其中溅射制备得到的涂层中存在一定的空位缺陷。这些缺陷将阻碍纳米涂层中的能量传递。同时共格生长界面层中的晶格失配和空位缺陷使得过渡界面层中粒子的活动能力增大,可能造成涂层在热应力作用下的失效。涂层中粒子运动功率图谱表明声子传递无明显规律。 The thin films with modulation period of 1.8 nm Cu/3.6 nm Au are obtained via deposit method and ideal created based on lattice constant to examine their characteristics under temperature gradient based on molecular dynamics simulations.The coherent lattice interface is found both at deposit and ideal thin films after annealing.Also,the vacancies is found clearly in the deposit thin films.The defect thin films would weak the energy transportation in the coatings.The vacancies and lattice mismatch could enlarge the mobility of atoms and result in the failure of coating under the thermal stress.The power spectrum of atoms' movement showed no apparent rule for phonon transportation in thin films.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2016年第3期466-470,共5页 Journal of Engineering Thermophysics
基金 重庆市基础科学与前沿技术研究专项基金(No.cstc2015jcyjA50008) 国家自然科学基金(No.51506013,No.11332013,No.11272364)
关键词 纳米涂层 温度梯度 均方位移 分子动力学 thin films temperature gradient mean square displacement molecular dynamics simulation
  • 相关文献

参考文献14

  • 1Freund L B, Suresh S. Thin Film Materials: Stress, Defect Formation and Surface Evolution [M]. United Kingdom: Cambridge University Press, 2003.
  • 2Koehler J. Attempt to Design a Strong Solid [J]. Physical Review B, 1970, 2(2): 547-551.
  • 3Song Yan, Zhuan Xin, Wang T J, et al. Evolution of Thermal Stress in a Coating/Substrate System During the Cooling Process of Fabrication [J]. Mechanics of Materials, 2014, 74(0): 26-40.
  • 4Tao, Peng Xianghe, Huang Cheng, et al. Molecular Dynamics Simulation of VN Thin Films Under Indentation [J]. Applied Surface Science, 2015, 357:643- 650.
  • 5Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications, Second Edition [M]. New York: Academic Press, 2002.
  • 6Peng Tiefeng, Li Qibin, Liu Chao. Accelerated Aqueous Nano-Film Rupture and Evaporation Induced by Electric Field: a Molecular Dynamics Approach [J]. International Journal of Heat and Mass Transfer. 2016. 94:3948.
  • 7Li Qibin, Liu Chao, Chen Xi. Molecular Dynamics Simulation of Sulphur Nucleation in S-H2S System [J]. Molecular Physics, 2014, 112(7): 947-955.
  • 8Li Qibin, Liu Chao, Zhang Zhi. Prediction of Solubility of Sulfur in Hydrogen Sulfide Based on Molecular Dynamics Simulation [J]. Asian Journal of Chemistry, 2014, 26(4): 1041-1043.
  • 9Zhou X W, Johnson R A, Wadley H N G. Misfit-Energy- Increasing Dislocations in Vapor-Deposited CoFe/NiFe Multilayers [J]. Physical Review B, 2004, 69(14): 144113.
  • 10Li Qibin, Liu Chao. Molecular Dynamics Simulation of Heat Transfer With Effects of Fluid Lattice Interactions [J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 8088-8092.

二级参考文献16

  • 1梁新刚,岳宝.微尺度下壁面粗糙度对面向导热影响研究[J].工程热物理学报,2006,27(3):475-477. 被引量:5
  • 2WANG S Y, YANG Q Y, ZHONG C L. Adsorption and Separation of Binary Mixtures in a Metal-Organic Framework Cu-BTC: A Computational Study [J]. Sep. Purif. Technol., 2008, 60:30-35.
  • 3XU X C, SONG C S, Miller G B, et al. Adsorption Sepa- ration of Carbon Dioxide from Flue Gas of Natural GasFired Boiler by a Novel Nanoporous Molecular Basket Ad- so,bent [J]. Fuel Process Technol., 2005, 86:1457-1472.
  • 4Miuzkmai K, Takaba H, Kobayashi Y. Molecular Dynamics Calculations of CO2/ N2 Mixture Through the NaY Type Zeolite Membrane [J]. J. Membrane Sci., 2001, 188: 21-28.
  • 5Chempath S, Krishna R, Snurr Q R. Nonequilibrium Molecular Dynmaics Simulations of Diffusion of BinaryMixture Containing Short mAlkanes in Faujasite [J]. J. Phys. Chem. B, 2004, 108:13481-13491.
  • 6XU L F, Tsotsis T T, Muhammad S. Nonequilibriun Molecular Dynamics Simulation of Transport and Sepa- ration of Gases in Carbon Nanopores. I. Basic Results [J]. J. Chem. Phys., 1999, 7(111): 3252-3264.
  • 7Thompson P A, Troian S M. A General Boundary Condition for Liquid Flow at Solid Surfaces [J]. Nature, 1997, 389(6649): 360-362.
  • 8Cosgrove J A, Buick J M, Tonge S J, et al. Application of the Lattice Boltzmann Method to Transition in Oscillatory Channel Flow [J]. J. Phys. A-Math. Theor., 2003, 36(10): 2609-2620.
  • 9Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. Oxford: Oxford University Press, 1989:22-23.
  • 10FAN X J, NHAN P T, YONG T N, et al. Molecular Dynamics Simulation of a Liquid in a Complex Nano Channel Flow [J]. Phys, Fluids, 2002, 14(3): 1146-1153.

共引文献8

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部