期刊文献+

大型并行服务系统的利润分配机制设计 被引量:1

MECHANISM DESIGN OF PROFIT ALLOCATION FOR A LARGE-SCALE PARALLEL QUEUEING SERVICE SYSTEM
原文传递
导出
摘要 大型服务系统及其运营管理是目前诸如管理科学与信息科学中最重大的科学问题之一,也是在工业界和商业界备受关注的热点课题.在大型服务系统中,设计一个合理的利润分配机制是实现各个单元协同运营并能有效提高系统效率与效益的重要前提.文章使用合作博弈理论对具有n个独立并行不同M/M/1排队的服务系统的利润分配机制进行了数学建模,提出了三个不同的利润分配机制:1)利用Shapley值分配服务系统的利润:2)通过基于联盟长度的改进Shapley值,给出了利润分配的一种新机制:3)利用加权Shapley值设计了利润分配的另一种新机制.值得注意:这三种分配机制侧重于大型服务系统的利润分配的不同方面,其最终的分配结果对系统的运行产生不同的影响.最后,通过数值算例对Shapley值及其利润分配机制进行了详细分析与说明. Service systems and their operation management are one of the most important and attractive scientific issues in, such as, management sciences and infor- mation sciences, and they are also hot topics in industrial and business areas. It is of great importance to design a reasonable profit allocation mechanism in a large-scale service system when cooperation of various cells is used to improve system's effec- tiveness and efficiency. To that end, we use the cooperative game theory to assign the profit allocation earned by the service units which are each of the n independent parallel different M/M/1 queues. We design three allocation mechanisms by means of the ordinary Shapley value, the modified shapely value based on the coalition length, and the weighted Shapley value. Since the three mechanisms focus on the different aspects of profit allocation, we discuss impacts of the three mechanisms on the sys- tem's operations, and specifically, some numerical examples are given for analysis and interpretation in some practical issues.
出处 《系统科学与数学》 CSCD 北大核心 2016年第2期169-182,共14页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(71271187 71471160) 河北省自然科学基金(A2012203125) 河北省高等学校创新团队领军人才培育计划(LJRC027) 燕山大学青年教师自主研究计划(14LGB031)资助课题
关键词 服务系统 合作博弈 利润分配 机制设计 SHAPLEY值 Service system, cooperative game, profit allocation, mechanism design,Shapley value.
  • 相关文献

参考文献19

  • 1Ozener O O, Ergun O, Savelsbergh M. Allocating cost of service to customers in inventory routing. Operational Research, 2013, 61(1): 112-125.
  • 2Manuel C, Gonzalez-Aranguena E, von den Brink R. Players indifferent to cooperate and char- acterizations of the Shapley value. Mathematical Methods of Operations Research, 2013, 77(1): 1-14.
  • 3Marden J R, Wierman A. Distributed welfare games. Operational Research, 2013, 61(1): 155-168.
  • 4Ma R T B, Chiu D M, Lui J, Misra V, Rubenstein D. Internet economics: The use of Shapley value for ISP settlement. IEEE/ACM Transactions on Networking, 2010, 18(3): 775-786.
  • 5Anily S, Haviv M. Cooperation in service systems. Operational Research, 2010, 58(3): 660-673.
  • 6Gonzalez P, Herrero C. Optimal sharing of surgical costs in the presence of queues. Mathematical Methods of Operations Research, 2004, 59(3): 435-446.
  • 7Garcia-Sanz M D~ Fernandez F R, Fiestras-Janeiro M Z, Garcia-Jurado I, Puerto J. Cooperation in Markovian queueing models. European Journal of Operational Research, 2008, 188(2): 485- 495.
  • 8Nagarajan M, Sosic G. Game-theoretic analysis of cooperation among supply chain agents: Re- view and extension. European Journal of Operational Research, 2008, 187(3): 719-745.
  • 9Gurumuthi S, Benjaafar S. Modeling and analysis of flexible queueing system. Naval Research Logistics, 2004, 51(5): 755-782.
  • 10Doro M, Hartman B C. Shipment consolidation: Who pays for it and how much? Management Science, 2007, 53(1): 78-87.

二级参考文献100

共引文献160

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部