期刊文献+

穿戴式智能计步器设计 被引量:8

Design of Wearable Smart Pedometer
下载PDF
导出
摘要 文中基于高精度三轴加速度/角速度传感器MPU6050的计步器设计,采用MSP430F149单片机为主控制器、MPU6050为核心采集模块,通过采集人体姿态数据,经由算法识别判断人体运动行为,并结合安卓智能手机客户端进行运动实时监测。使用者可实时掌握步行数据以及卡路里消耗;采集模块与主控电路经蓝牙模块发送运动数据到安卓手机客户端;该设计同时还具有仰卧起坐陪练功能供选择。经PCB开发研制和功能调试,结果表明该设计具有多功能,易携带,功耗低,且运行稳定等特点。 This paper discusses the design of Pedometer based on high-precision triaxial accelerometer/angular velocity sensor MPU6050. With MSP430F149 MCU as master controller and MPU6050 as core acquisition module,the exerciser can real-time grasp performance and calories burned. The Bluetooth module is used to transmit data between MSP430 and acquisition module. The Sit-UP Partner function has been added to the system for exercisers.The test shows that the design is feasible and easy to carry.
出处 《电子科技》 2016年第3期178-182,共5页 Electronic Science and Technology
关键词 计步器 仰卧起坐陪练器 MSP430F149 MPU6050 卡路里消耗 pedometer sit-up partner MSP430F149 MPU6050 calories burned
  • 相关文献

参考文献12

二级参考文献58

  • 1崔刚,陈文楷.基于FPGA的数字钟设计[J].现代电子技术,2004,27(22):102-103. 被引量:8
  • 2王明衍,赵毅.一种基于RS-485接口的通信方法[J].微计算机信息,2006,22(02S):220-222. 被引量:11
  • 3李伟,吴效明.基于蓝牙技术的嵌入式多生理参数监护仪[J].微计算机信息,2006(01Z):29-31. 被引量:33
  • 4Ailisto H,Lindholm M,Mantyjarvi J,et al. Identifying users of portable devices from gait pattern with accelerometers [ A ]. IEEE International Conference on Acoustics, Speech, and Signal Processing[ C ]. Philadelphia: IEEE Signal Processing Society, 2005.Ⅱ. 973 - 976.
  • 5Gafurov Davrondzhon, Helkala Kirsi, Sondrol Torkjel. Gait recognition using acceleration from MEMS[ A]. Proceedings of the 1^st Intemational Conference on Availability, Reliability and Security[ C]. Vienna: Imtitute of Electrical and Electronics Engineers Computer Society,2006.432 - 437.
  • 6Mathie M J,CeUer B G,Lovell Nigel H,et al. Classification of basic daily movements using a lriaxial accelerometer[ J] .Medical and Biological Engineering and Computing, 2004, 42 ( 5 ) : 679 - 687.
  • 7D M Karantonis,M R Narayanan, M Mathie, et al. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring[ J]. IEEE Transactions on Information Technology in Biomedicine, 2006, 10( 1 ) : 156 - 167.
  • 8N Ravi,N Dandekar,P Mysore, et al.Activity recognition from accelerometer data[ A ]. Proceedings of the 20^th National Conference on Artificial Intelligence[ C ]. Pittsburgh: American Association for Artificial Intelligence,2005. V3. 1541 - 1546.
  • 9Ohtaki Y, Susumago M, Suzuki A, et al. Automatic classification of ambulatory movements and evaluation of energy consumptions u utilizing accelerometers and a barometer [ J ]. Microsystem Technologies, 2005,11 (8 - 10 ) : 1034 - 1040.
  • 10Masakatsu Kourogi, Takeshi Kurata. Personal positioning based on walking locomotion analysis with self-contained sensors and a wearable camera[ A]. Proceedings of the 2^nd IEEE and ACM International Symposium on Mixed and Augmented Reality [ C]. Tokyo: IEEE Computer Society ,2003. 103 - 112.

共引文献128

同被引文献62

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部