摘要
数学直观被胡塞尔视作最高级的范畴直观,它所带来的明见性既是确然的,又是确实的。这似乎意味着数学直观是必然正确的。但另一方面,胡塞尔持有一种数学柏拉图主义,而这又要求数学直观是可错的。为解决这一矛盾,数学明见性,从其确实性维度,必须借助于哥德尔不完全性定理,被理解为非完全确实的;而从确然性维度,它应被理解为是由主体经验所建构的,依然受到主体可设想能力的限制。
Husserl regards mathematical intuition as the highest kind of categorical intuitions. It brings about apodictic and adequate evidence. This suggests that mathematical intuition must be infallible. On the other hand, Husserl holds a version of mathematical Platonism which entails that mathematical intuition is fallible. To resolve this apparent inconsistency, adequate evidence must be interpreted as partially adequate, in light of G觟del's incompleteness theorem; while apodictic evidence as constituted by subject's experience and as constrained by subjects' conceivability.
出处
《自然辩证法研究》
CSSCI
北大核心
2016年第3期84-89,共6页
Studies in Dialectics of Nature
基金
国家社会科学基金青年项目"胡塞尔数学哲学演进历程研究"(15CZX039)
关键词
数学现象学
确然明见性
确实明见性
phenomenology of mathematics
apodictic evidence
adequate evidence