期刊文献+

关于k重unitary完全数(英文)

On Unitary k-perfect Numbers
原文传递
导出
摘要 给定正整数N,如果d/N且(d,N/d)=1,则称d为N的unitary因子.设κ≥2为整数,σ*(N)表示N的所有unitary因子的和.若σ*(N)=kN,则称N为k重unitary完全数.本文给出了κ重unitary完全数的一些性质. For a positive integer N, we call d a unitary divisor of N ifd I N and (d, N /d) =1. Let k ≥ 2 be an integer, and let σ*(N) denote the sum of the unitary divisors of N. We call N a unitary k-perfect number if σ* (N) = kN. In this paper, we give some necessary properties of them.
作者 汤敏 杨全会
出处 《数学进展》 CSCD 北大核心 2016年第2期190-194,共5页 Advances in Mathematics(China)
基金 supported by NSFC(No.11471017,No.11371195)
关键词 unitary因子 κ重unitary完全数 unitary divisor unitary k-perfect number
  • 相关文献

参考文献10

  • 1Dusart, P., The k-th prime is greater than k(lnk+lnlnk-1) for k ≥ 2, Math. Comp., 1999, 68(225): 411-415.
  • 2Goto, T., Upper bounds for unitary perfect numbers and unitary harmonic numbers, Rocky Mountain J. Math., 2007, 37(5): 1557-1576.
  • 3Graham, S.W., Unitary perfect numbers with squarefree odd part, Fibonacci Quart., 1989, 27(4): 317-322.
  • 4Hagis, P.Jr., Lower bounds for unitary multiperfect numbers, Fibonacci Quart., 1984, 22(2): 140-143.
  • 5Harris, V.C. and Subbarao, M.V., Unitary multiperfect numbers, Notices Amer. Math. Soc., 1972, 21(4): A-435.
  • 6Subbarao, M.V. and Warren, L.J., Unitary perfect numbers, Canad. Math. Bull., 1966, 9(2): 147-153.
  • 7Wall, C.R., The fifth unitary perfect number, Canad. Math. Bull., 1975, 18(1): 115-122.
  • 8Wall, C.R., New unitary perfect numbers have at least nine odd components, Fibonacci Quart., 1988, 26(4): 312-317.
  • 9Yuan, P.Z., An upper bound for the number of odd multiperfect numbers, Bull. Aust. Math. Soc., 2014, 89(1): 1-4.
  • 10Yuan, P.Z. and Zhang, Z.F., Addition to 'an upper bound for the number of odd multiperfect numbers', Bull. Aust. Math. Soc., 2014, 89(1): 5-7.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部