期刊文献+

基于传递熵的MPCA间歇过程监测方法 被引量:3

MPCA Online Monitoring Based on Transfer Entropy for Batch Process
下载PDF
导出
摘要 传统统计分析方法忽略了变量间作用关系,而传递熵可以有效地表达变量间作用关系,因此提出了一种基于传递熵的MPCA间歇过程监测方法.利用传递熵表达变量间的作用关系,在计算传递熵时采用非参数核密度估计法,利用该方法不依赖于数据先验分布知识的特点来处理非高斯分布的过程数据,通过构建传递熵矩阵,结合滑动窗,实现对间歇过程变量间信息传递的动态表达,最后对传递熵矩阵进行多向主元分析方法(MPCA)建模,实现间歇过程监测.通过青霉素发酵的仿真,结果表明与传统多变量统计过程控制(MSPC)方法作对比,本文监测方法能更及时准确地监测到过程异常. The traditional statistical analysis methods ignore the relations between variables. Transfer entropy could express relations between variables effectively. So this paper proposes an MPCA online monitoring method based on entropy transfer for batch process. The transfer entropy is adopted to describe the complex relations between process variables. The non-parametric kernel density estimation method which does not depend on the prior distribution of data is utilized to calculate transfer entropy to deal with the non-Gauss distribution of the process data. By constructing the transfer entropy matrix combined with the sliding window to achieve the expression of dynamic information transfer between process variables, the MPCA model is then established based on these matrices for detecting faults of batch process. The simulation results show that, compared with the traditional MSPC method, the proposed method can timely identify the faults with better accuracy.
作者 赵化良
出处 《计算机系统应用》 2016年第2期146-151,共6页 Computer Systems & Applications
关键词 间歇过程 传递熵矩阵 核密度估计 多向主元分析 在线监测 batch processes transfer entropy matrix kernel density estimation multiway principal component analysis online monitorin
  • 相关文献

参考文献14

  • 1Nomikos P, MacGregor JF. Monitoring batch processes using multiway principal component analysis. American Institute of Chemical Engineers Journal, 1994, 40(8): 1361-1375.
  • 2Lee JM, Yoo CK, Lee IB. Fault detection of batch process using multiway kernel principal component analysis. Computers and Chemical Engineering, 2004, 28(9): 1837-1847.
  • 3Yoo CK, Lee JM, Vanrolleghem PA, Lee IB. On-line monitoring of batch process using multiway independent component analysis. Chemometrics and Intelligent Laboratory Systems, 2004, 71(2): 151-163.
  • 4Zhang YW, Qin SJ. Fault detection of nonlinear processes using multiway kernel independent component analysis. Industrial and Engineering Chemistry Research, 2007, 46: 7780-7787.
  • 5谢晓庆,王建林,赵利强,于涛.基于时段及过渡区域的KICA间歇过程监测方法[J].计算机与应用化学,2014,31(10):1250-1256. 被引量:2
  • 6Schreiber T. Measuring information transfer.Physical Review Letters, 2000, 85(2): 461-464.
  • 7Kaiser A, Schreiber T. Information transfer in continuous processes. Physica D: Nonlinear Phenomena, 2002, 166(1): 43-62.
  • 8Lizier JT, Prokopenko M, Zomaya AY. A framework for the local information dynamics of distributed computation in complex systems. Guided Self-Organization: Inception, Series Emergence, Complexity and Computation. Springer Berlin Heidelberg. 2014, 9: 115-158.
  • 9Vicente R, Wibral M, Lindner M, et al. Transfer entropy-a model-free measure of effective connectivity for the neurosciences. Journal of Computational Neuroscience, 2011, 30(1): 4557.
  • 10Ito S, Hansen ME, Heiland R, et al. Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PIoS One, 2011, 6(11): e27431.

二级参考文献4

共引文献1

同被引文献39

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部