期刊文献+

Driving mechanisms of nitrogen transport and transformation in lacustrine wetlands 被引量:3

Driving mechanisms of nitrogen transport and transformation in lacustrine wetlands
原文传递
导出
摘要 As an essential component of proteins and genetic material for all organisms, nitrogen(N) is one of the major limiting factors that control the dynamics, biodiversity and functioning of lacustrine wetlands, in which intensified N biogeochemical activities take place. Reactive N loaded into wetland ecosystems has been doubled due to various human activities, including industrial, agricultural activities and urbanization. The main driving mechanisms of N transport and transformation in lacustrine wetlands are categorized to pushing forces and pulling forces in this study. Geomorphology, wetland age, N concentrations, and temperature are the main pushing forces(passive forces); whereas water table variation, oxygen concentration, other elements availability, oxidation-reduction potential(Eh) and p H, and microorganisms are the predominant pulling forces(active forces). The direction and kinetic energy of reactions are determined by pulling forces and then are stimulated by pushing forces. These two types of forces are analyzed and discussed separately. Based on the analysis of driving mechanisms, possible solutions to wetland N pollutions are proposed at individual, regional and global scales, respectively. Additional research needs are addressed to obtain a thorough understanding of N transport and transformations in wetlands and to reduce detrimental impacts of excessive N on such fragile ecosystems. As an essential component of proteins and genetic material for all organisms, nitrogen(N) is one of the major limiting factors that control the dynamics, biodiversity and functioning of lacustrine wetlands, in which intensified N biogeochemical activities take place. Reactive N loaded into wetland ecosystems has been doubled due to various human activities, including industrial, agricultural activities and urbanization. The main driving mechanisms of N transport and transformation in lacustrine wetlands are categorized to pushing forces and pulling forces in this study. Geomorphology, wetland age, N concentrations, and temperature are the main pushing forces(passive forces); whereas water table variation, oxygen concentration, other elements availability, oxidation-reduction potential(Eh) and p H, and microorganisms are the predominant pulling forces(active forces). The direction and kinetic energy of reactions are determined by pulling forces and then are stimulated by pushing forces. These two types of forces are analyzed and discussed separately. Based on the analysis of driving mechanisms, possible solutions to wetland N pollutions are proposed at individual, regional and global scales, respectively. Additional research needs are addressed to obtain a thorough understanding of N transport and transformations in wetlands and to reduce detrimental impacts of excessive N on such fragile ecosystems.
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第3期464-476,共13页 中国科学(地球科学英文版)
基金 the National Natural Science Foundation of China (Grant No. 41272249) Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110072110020)
关键词 Nitrogen Driving mechanisms Transport and transformation Excessive loading Lacustrine wetlands 湖泊湿地 氮素转运 驱动机制 迁移转化 生物地球化学 湿地生态系统 氧化还原电位 脆弱生态系统
  • 相关文献

参考文献1

二级参考文献5

共引文献10

同被引文献66

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部