期刊文献+

The blueberry(iron nodule)from the Shark Bay area, Western Australia and its implication to the genetic environments of iron nodules on Mars

The blueberry(iron nodule)from the Shark Bay area, Western Australia and its implication to the genetic environments of iron nodules on Mars
原文传递
导出
摘要 Fist-sized iron nodules, extensively found on the ground of Western Australia, were investigated by element analysis(XRF, ICP-MS and ICP-AES), electron microscopes, X-ray diffraction and M?ssbauser spectroscopy. Loosely-packed pisoidic structures of a few to >10 mm in size were observed in the cross-section of nodules. Chemically, the nodules are majorly made of O, Si, Fe and Al, and share similar REE pattern with the loess sourced Greatford concretions from New Zealand. Angular quartz particles, nano-sized goethite and hematite are found to be the major mineral phases. Other minerals, such as detrital zircon, barite and Ce-containing particles can also be observed but of very low abundance. No detectable carbonate or amorphous silica implies that these nodules have experienced little underground fluid alteration. The quartz particles showing particularly three sections of fractal size-distributions, together with their extensive broken features and conchoidal fractures, strongly suggest in situ fragmentation of the host rock with minimum later dynamic sorting. These observations indicate the genetic environment of those nodules is always close to the surface of the tectonically stable ground since their formation. Because of the similarity of climatic and geological features, the genesis and preservation environment of these nodules in Western Australia may provide clues on the formation of Martian iron concretions. Fist-sized iron nodules, extensively found on the ground of Western Australia, were investigated by element analysis(XRF, ICP-MS and ICP-AES), electron microscopes, X-ray diffraction and M?ssbauser spectroscopy. Loosely-packed pisoidic structures of a few to 〉10 mm in size were observed in the cross-section of nodules. Chemically, the nodules are majorly made of O, Si, Fe and Al, and share similar REE pattern with the loess sourced Greatford concretions from New Zealand. Angular quartz particles, nano-sized goethite and hematite are found to be the major mineral phases. Other minerals, such as detrital zircon, barite and Ce-containing particles can also be observed but of very low abundance. No detectable carbonate or amorphous silica implies that these nodules have experienced little underground fluid alteration. The quartz particles showing particularly three sections of fractal size-distributions, together with their extensive broken features and conchoidal fractures, strongly suggest in situ fragmentation of the host rock with minimum later dynamic sorting. These observations indicate the genetic environment of those nodules is always close to the surface of the tectonically stable ground since their formation. Because of the similarity of climatic and geological features, the genesis and preservation environment of these nodules in Western Australia may provide clues on the formation of Martian iron concretions.
出处 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第3期640-650,共11页 中国科学(地球科学英文版)
基金 a General Research Fund (Grant No. HKU 703911P) provided by the Hong Kong Research Grants Council
关键词 Iron nodules Western Australia Fractal dimensions In situ fragmentation Mars 澳大利亚 保存环境 铁结核 核遗传 西部 火星 ICP-AES 无定形二氧化硅
  • 相关文献

参考文献3

二级参考文献21

共引文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部