期刊文献+

基于数值模拟仿真的锌溴电池流道设计评估

Estimation of zinc-bromine battery flow channel based on numerical simulation
下载PDF
导出
摘要 液流框是锌溴液流电池电堆的核心部件之一,为了对已付诸应用的液流框流道设计进行评估,本文针对流道建立物理模型,以真实电解液物性参数为研究对象,借助数值模拟,进行流体仿真计算(CFD)。文章详细探讨了电解液在流道内的流场分布、出口流量均匀度、流道进出口压差以及不同黏度与进口流量对压降的影响。结果表明:现有的流道设计可实现各出口流量均等,但电解液在扇形坡面设计并未能实现均匀分布,坡面结构有待优化;250 m L/min、0.018 Pa·s工况下的电解液在流道内的压降为22.3 k Pa;电解液在流道内的压差与黏度的0.7次方成正比,与流量的1.3次方成正比。 Flow frame is a core part of zinc-bromine flow battery. Flow channel model is established in order to estimate the performance of flow channel used in application. Based on numerical calculation and flow dynamic simulation on electrolyte, some issues are studied including flow distribution in channel, flow rate in 4 outlets, pressure drop and its influencing factors like viscosity and inlet flow rate. It shows that: 4 outlets have same flow rate while electrolyte is not uniformly distributed in sector area. The pressure drop in channel under 200 m L/min, 0.018 N·m is 22.3 k Pa, and the pressure drop is in proportion to the viscosity to the power of 0.7 of electrolyte and the flow rate to the power of 1.3.
出处 《储能科学与技术》 CAS 2016年第2期228-234,共7页 Energy Storage Science and Technology
关键词 锌溴电池 数值模拟 流道 压差 黏度 流量 zinc-bromine battery numerical calculation flow channel pressure drop viscosity flowrate
  • 相关文献

参考文献14

  • 1全国工商联新能源商会储能专业委员会.储能产业研究白皮书[R].北京:2011.
  • 2孟琳.锌液流电池储能技术研究和应用进展[J].储能科学与技术,2013,2(1):35-41. 被引量:10
  • 3国家能源局(可再生能源司).国家储能产业“十三五”规划重大课题研究报告[R].2015.
  • 4CATHRO K J,CONSTABLE D C,HOOBIN P M.Performance of porous plastic separators in zincbromine cells[J].Journal of Power Sources,1988,22:29-57.
  • 5CATHRO K J,CONSTABLE D C,HOOBIN P M.Selection of quaternary ammonium bromides for use in zinc/bromine cells[J].Journal of Power Sources,1986,18:349-370.
  • 6CATHRO K J,CONSTABLE D C,HOOBIN P M.Some properties of zinc-bromine battery electrolytes[J].Journal of Power Sources,1985,16:53-63.
  • 7CEDZYNSKA K.Some properties of zinc-bromine cell electrolytes containing symmetrical ammonium bromides[J].Electrochemical Acta,1989,34(10):1439-1442.
  • 8HOOBIN P M,CATHRO K J.Stability of zinc-bromine battery electrolytes[J].Journal of Applied Electrochemistry,1989,19(9):943-945.
  • 9MOBIUST V A.On some problems of the zinc-bromine system as an electric energy storage system of higher efficiency.Part 1.Kinetics of the bromine electrode[J].Elecrrochimica Acta,1991,36(9):1403-1408.
  • 10CEDZYNSKA K.Properties of modified electrolyte for zinc-bromine cells[J].Electrochimice Acta,1995,40(8):971-976.

二级参考文献23

  • 1周德璧,于中一.锌溴液流电池技术研究[J].电池,2004,34(6):442-443. 被引量:20
  • 2李文春,胡桂林,刘永江,樊建人,岑可法.熔融碳酸盐燃料电池的计算流体力学模拟[J].浙江大学学报(工学版),2005,39(10):1638-1643. 被引量:2
  • 3Pritam S, Bjorn J. Zinc-bromine battery for energy storage[J]. J Power Sources, 1991,35(4): 405 - 410.
  • 4Yan X, Dean P. Novel power management for high performance and cost reduction in an electric vehicle[J]. Renewable Energy, 2001,22(1 -3):177- 183.
  • 5Iacovangelo C D, Will F G. Parametric study of zinc deposition on porous carbon in a flowing electrolyte cell[J]. J Electrochem Soc,1985, 132(4): 851 - 856.
  • 6Chiu S L, Selman J R. Determination of electrode kinetics by corrosion potential measurements. Zinc corrosion by bromine[J]. J Appl Electrochem, 1992, 22(1):28.
  • 7Yang S. An approximate model for estimating the faradaic efficiency loss in zinc/bromine batteries caused by cell self-discharge[J]. J Power Sources, 1994, 50(3): 343 - 360.
  • 8Hoobin P M, Niere C K J. Stability of zinc/bromine battery electrolytes[J]. J Appl Electrochem, 1989, 19(6):943.
  • 9Krystyna C. Properties of modified electrolyte for zinc-bromine cells[J]. Electrochimica Acta, 1995, 40(8): 971 - 976.
  • 10Kautek W, Conradi A, Fabjan C, et al. In situ FTIR spectroscopy of the Zn-Br battery bromine storage complex at glassy carbon electrodes[J]. Electrochimica Acta, 2001, 47(5): 815- 823.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部