期刊文献+

一种适用于任意余数基的高性能后向转换结构

An Efficient Architecture of Reverse Converter for Arbitrary Moduli Set
下载PDF
导出
摘要 后向转换是从余数到二进制数的转换,在余数系统的应用中既是重点也是难点。通过简化中国剩余定理,避免对M求模,提出了一种适用于任意余数基的高性能后向转换结构。该结构采用Verilog HDL进行代码设计,并用VCS和Verdi进行仿真和验证,最后选择SMIC 0.13μm工艺并采用DC工具完成代码综合,生成面积和时延报告。综合结果表明,该结构的"面积×时延"复杂度较同类的中国剩余定理结构和混合基转换结构,分别降低了23.3%和26.4%,转换性能显著提高。 The conversion from residue to the binary number which is often called reverse conversion,is critical and difficult for the practicality of residue number system(RNS).By simplifying the Chinese remainder theorem(CRT)and avoiding modulo M,an efficient architecture of reverse converter for the arbitrary moduli set was proposed.Its code design was accomplished in Verilog HDL.VCS and Verdi were employed to complete the simulation and verification.Finally,Design Compiler with SMIC 0.13μm technology was used to synthesize the RTL codes and generate the reports of area and delay as well.Compared with the CRT-based architecture and the MRC-based architecture,the synthesized results indicated that the proposed architecture could achieve an average complexity of "area×delay"savings of 23.3% and 26.4% respectively,and the conversion performance was improved significantly.
作者 杨鹏 李磊
出处 《微电子学》 CAS CSCD 北大核心 2016年第1期124-127,共4页 Microelectronics
基金 航空科学基金资助项目(20110580002) 中央高校基础研究基金资助项目(ZYGX2009J092)
关键词 余数系统 后向转换 中国剩余定理 任意余数基 Residue number system Reverse conversion Chinese remainder theorem Arbitrary moduli set
  • 相关文献

参考文献8

  • 1SZABO N S, TANAKA R I. Residue arithmetic and its application to computer technology[J]. SaimReview, 1969(1): 103-104.
  • 2SODERSTRAND M A, JENKINS W K, JULLIEN G A, et al. Residue number system arithmetic: modern applications in digital signal processing [M]. New York: IEEE Press, 1986.
  • 3熊承义,高志荣,田金文,柳健.简化的模(2^n-1)乘运算算法及其VLSI结构[J].微电子学,2005,35(5):486-488. 被引量:1
  • 4LOW J Y S, CHANG C-H. A new approach to the design of efficient residue generators for arbitrary moduli[J].IEEE Trans Circ Syst I: Regu Pap, 2013, 60(9): 2366-2374.
  • 5BANKAS E K, GBOLAGADE K A. A residue to binary converter for a balanced moduli set {22n+1 --1, 2zn, 22n --1} [C] // iCAST-UMEDIA. Aizuwakamatsu, Japan. 2013: 211-216.
  • 6GBOLAGADE K A, VOICU G R, COTOFANA S D. Memoryless RNS-to-binary converters for the {2n+l -- 1, 2~, 2~-1} moduli set [C] // 21st IEEE ASAP. Rennes, France. 2010: 301-304.
  • 7ALIA G, MARTINELLI E. A VLSI algorithm for direct and reverse conversion from weighted binary number system to residue number system [J]. IEEE Trans Circ ~ Syst, 1984, 31(12):1033-1039.
  • 8HUANG C H. A fully parallel mixed-radix conversion algorithm for residue number applications [J].IEEE Trans Comput, 1983, C-32(4) : 398-402.

二级参考文献9

  • 1Liu Y, Lai E M-K. Design and implementation of an RNS-based 2-D DWT processor[J]. IEEE Trans Consumer Electronics, 2004, 50(1): 376-385.
  • 2Taylor F J. A VLSI residue arithmetic multiplier[J]. IEEE Trans Computers, 1982, 31(6): 540-546.
  • 3Taylor F J. A single modulus complex ALU for signal processing[J]. IEEE Trans Acoustics, Speech, and Signal Processing, 1985, 33(5): 1302-1315.
  • 4Benaissa M, Bouridane A, Dlay S S, et al. Diminished-1 multiplier for a fast convolver and correlator using the fermat number transform[J]. IEE Proc G, 1988, 135(5): 187-193.
  • 5Benaissa M, Pajayakrit A. Dlay S.S, et al. VLSI design for diminished-1 multiplication of integers modulo a fermat number[J]. IEE Proc E, 1988, 135(3):161-164.
  • 6Skavantzos A, Rao P B. New multipliers modulo (2n-1)[J]. IEEE Trans Compu, 1992, 41(8): 957-961.
  • 7Curiger A V, Bonnenberg H, Kaeslin H. Regular VLSI architectures for multiplication modulo (2n+1)[J]. IEEE J Sol Sta Circ, 1991, 26(7): 990-994.
  • 8Hiasat A. New memoryless, mod (2n±1) residue multiplier[J]. Electronics Letters, 1992, 28(3): 314-315.
  • 9Ashur A S, Ibrahim M K, Aggoun A. Novel RNS structures for the moduli set (2n-1, 2n, 2n+1) and their application to digital filter implementation[J]. Signal Processing, 1995, 6(3): 331-343.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部