期刊文献+

面向微型近红外光谱仪的高效扫描光栅微镜设计(英文) 被引量:2

Design of high-efficiency scanning gratingmirror for near-infrared micro-spectrometer
下载PDF
导出
摘要 近年来,随着微光机电系统(MOEMS)技术的快速发展,光谱仪朝着微型化、低成本、高性能方向发展。基于MOEMS技术制作的闪耀光栅可集成于扫描微镜,其作为近红外光谱仪的核心部件,可实现单管探测器代替昂贵的阵列式探测器,以降低近红外光谱仪成本与体积。设计了一种高性能扫描光栅微镜,以提高光谱仪的探测灵敏度。扫描微镜表面集成高衍射效率光栅,背面制作电磁驱动线圈。采用光学软件与有限元方法对器件参数进行优化。仿真结果表明:扫描光栅微镜谐振频率为484.38Hz,最大扭转角度为±4.55°,在800~1800nm工作波长范围内,整体动态衍射效率在54%以上且最大值达90%。 In the last few years, with the rapid development of micro-opto-electro-mechanical-systems(MOEMS), near-infrared(NIR) spectrometers are moving towards low cost, high performance and miniaturi-zation. As a key component of NIR micro-spectrometers, the scanning grating mirror has an imponderable ad-vantage on diffraction efficiency compared to other grating mirrors, which makes it feasible to develop high opti-cal detecting sensitivity systems with one single photodiode. In order to improve the detecting performance ofNIR spectrometers, a single silicon MOEMS scanning grating mirror has been designed, which integrates a highdiffraction efficiency blazed grating on the top and an electromagnetic actuator on the bottom. Based on a tilted(111) silicon substrate, the scanning grating mirror structure can be easily fabricated by micromachining tech-nology. Meanwhile, a simulation has also been carried out by optical software and finite element analysis(FEA), and the results show that the dynamic diffraction efficiency is more than 54% and the peak value rea-ches 90% in the spectrum range of 800-1800 nm, meanwhile the maximum torsion angle of MOMES scanninggrating mirror is ±4.55° at the frequency of 484.38 Hz.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2016年第6期140-145,共6页 High Power Laser and Particle Beams
基金 supported by the Special Funds of the National Natural Science Foundation of China(61327002)
关键词 扫描光栅微镜 高衍射效率 近红外光谱仪 电磁驱动 scanning grating mirror high diffraction efficiency NIR micro-spectrometer electro-magnetic actuator
  • 相关文献

参考文献4

二级参考文献26

  • 1[1]Zhang H Y, Wang X L, Soos L. Design of a miniature solid-state NIR spectrometer[J]. SPIE,1995, 2475: 376-383.
  • 2[2]Blomberg M, Rusanen O. A silicon microsystem-miniaturized spectrometer[C]. 1997 International Conference on Solid-State Sensors kand Actuators, 1997:1275-1258.
  • 3[3]Copyright ○ c 2002 Ion-Optics, Inc. pulsIR Infrared Light Sources[EB].www.ion-optics.com
  • 4[4]Sander D, Muller J. Selffocussing phase transmission grating for an integrated optical microspectrometer[J]. Sensors and Actuators A, 2001,88: 1-9.
  • 5[5]Kong S H, Wijngaarde D D L, Wolffenbuttel R F. Infrared microspectrometer based on a diffraction grating[J]. Sensors and Actuators A, 2001,92: 88-95.
  • 6[6]Lammel G, Schweizer S, Renaud Ph. Microspectrometer based on tunable optical filter of porous silicon[J]. Sensors and Axtuators A, 2001,92: 52-59.
  • 7[7]Manzardo O, Herzig H P. Miniaturized time-scanning Fourier transform spectrometer based in silicon technology[J]. Optics Lett., 1999, 24:1705-1708.
  • 8[8]Kung H L, Bhalotra S R. Compact transform spectrometer based on sampling a standing wave[J]. 0-7803-6257-8/00 IEEE,2000: 19-20.
  • 9[9]Zavracky P M, Hennenberg E. A new process for the fabrication of miniature Fabry Perot spectrometers[J]. Mechatronics, 1998,8: 485-504.
  • 10[10]Correia J H, Bartek M, Wolffenbuttel R F. Single-Chip CMOS optical microspectrometer[J].0-7803-4774-9/98,1998 IEEE,IEDM, 1998, 98: 467-470.

共引文献535

同被引文献32

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部