摘要
提出一种改进的基于逆模糊数的新模糊时间序列预测模型.应用模型研究辽宁省农机总动力预测问题,比一元线性回归模型,二次移动平均模型,指数曲线模型,灰色理论GM(1,1)模型等4种模型和它们的组合模型的平均预测误差率AFER都有较大改善,是值得推荐的一种时间序列预测方法.
The article presents an improved new fuzzy time sequence prediction model based on the inverse fuzzy number The AFER of using this model to study the prediction problem over the gross agricultural machine power in Liaoning Province has greatly improved in the average prediction error rate than those of using other four sorts of models,i.e.the unitary linear regression model,the binary moving average model,the exponential curve model and the gray theory GM(1,1) model and their combination model.This time sequence prediction approach is worthy to be recommended.
出处
《数学的实践与认识》
北大核心
2016年第3期52-58,共7页
Mathematics in Practice and Theory
基金
2014年度海南省自然科学基金项目(114011)
三亚市院地科技合作项目(2015YD33)
关键词
差分
逆模糊数
模糊时间序列
预测模型
农机总动力
difference
inverse fuzzy number
fuzzy time sequence
prediction model
gross agricultural machine power