期刊文献+

基于BP神经网络和改进遗传算法的单晶硅生产调度算法 被引量:1

Silicon Production Scheduling Based on Hybrid Algorithm of Genetic Algorithm and BP Neural Network Algorithm
下载PDF
导出
摘要 针对单晶硅生产企业在车间生产调度方面的问题,提出了基于BP神经网络和改进遗传算法的单晶硅生产调度算法。该算法在对投料的准确度上进行优化,对初始种群进行子种群划分,采用自适应的变异率和交叉率以及混合交叉方法进行遗传编码的交换。对最小化最大完成时间、最小化交付期逾期时间和最小化总能耗多目标提出了综合适应度计算。最后通过实验对该算法与经典遗传算法进行比较,验证该算法具有较好的性能,并能解决实际问题。 Silicon production scheduling algorithm is proposed which is based on BP neural network and improved genetic algorithm.The accuracy of the feeding amount is optimized by this hybrid algorithm,and initial population are divided into sub-populations,the use of adaptive mutation rate,crossover rate and hybrid crossover genetic coding of the exchange.A comprehensive fitness calculation is presented containing three goals to minimize the maximum completion time,to minimize delivery overdue time period and to minimize the total energy consumption.
出处 《工业控制计算机》 2016年第1期119-120,123,共3页 Industrial Control Computer
关键词 遗传算法 BP神经网络 种群划分 自适应 综合适应度 genetic algorithm BP neural network population division adaptive comprehensive fitness
  • 相关文献

参考文献5

二级参考文献35

  • 1王笑蓉,吴铁军.基于Petri网仿真的柔性生产调度——蚁群-遗传递阶进化优化方法[J].浙江大学学报(工学版),2004,38(3):286-291. 被引量:18
  • 2方开泰.均匀设计及其应用[J].数理统计与管理,1994,13(1):57-63. 被引量:131
  • 3袁坤,朱剑英.一种求解多目标柔性Job Shop调度的改进遗传算法[J].中国机械工程,2007,18(2):156-160. 被引量:24
  • 4FATI'AH1 P, MEHRABAD S M, JOLAI F. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems[ J ]. Journal of Intelligent Manufacturing, 2007 ( 18 ) : 331-342.
  • 5ROSSI A, DINI G. Flexible job-shop scheduling with routing flexibility and separable setup times using ant colony optimization method [ J ]. Robotics and Computer-Integrat- ed Manufacturing,2007,23 ( 5 ) :503-516.
  • 6GAO Jie, GEN M, SUN Lin-yan, et al. A hybrid of genetic algorithm and bottleneck shifting for multi-objective flexible job shop scheduling problems[ J]. Computers and Indus- trial Engineering,2007,53 ( 1 ) : 149-162.
  • 7MOSLEHI G, MAHNAM M. A pareto approach to multi-ob-jective flexible job-shop scheduling problem using particle swarm optimization and local search [ J ]. International Journal of Production Economics, 2010, doi : 10. 1016/j. ijpe. 2010.08.004.
  • 8GUTIERREZ C, GARCIA-MAGARINO I. Modular design of a hybrid genetic algorithm for a flexible job-shop scheduling problem [ J ]. Knowledge-Based Systems, 2010, dol: 10. 1016/j. knosys. 2010.07. 010.
  • 9XING Li-ning, CHEN Ying-wu, WANG Peng, et al. A knowledge-based ant colony optimization for flexible job shop scheduling problems [ J ]. Applied Soft Computing, 2010, 10(3) :888-896.
  • 10SHIN K S, PARK J 0, KIM Y K. Multi-objective FMS process planning with various flexibilities using a symbiotic evolutionary algorithm [ J ]. Computers and Operations Research, 2010,38 ( 3 ) : 702 -712.

共引文献60

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部