期刊文献+

四元Heisenberg群上的链和R-圆及其性质

Chain and R-circle on quaternionic Heisenberg group and their properties
下载PDF
导出
摘要 定义了四元双曲空间上的链和R-圆,并给出了链在垂直投影下的性质.证明了经过Heisenberg群上固定两点的链的唯一性,R-球的qc-水平性,并给出了R-圆与纯虚R-圆之间的关系. This paper defines chain and R-circle on quaternionic hyperbolic space, and gives the property of chains under the vertical projection. The uniqueness of chain passing through two distinct points and qc-horizontality of R-circles are proved, and the relationship between R-circle and pure imaginary R-circle is given.
作者 施云
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2016年第1期90-100,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然基金(11171298 11571305)
关键词 四元双曲空间 四元Heisenberg群 R-圆 quaternionic hyperbolic space quaternionic Heisenberg group chain R-circle
  • 相关文献

参考文献15

  • 1Ivanov S, Vassilev D. Conformal quaternionic contact curvature and the local sphere theo- rem[J]. J Math Pures Appl, 2010, 93: 277-307.
  • 2Ivanov S, Vassilev D. Quaternionic contact manifolds with a closed fundamental 4-form[J]. Bull London Math Soc, 2010, 42: 1021-1030.
  • 3Ivanov S, Minchev I, Vassilev D. Quaternionic contact Einstein structures and the quater- nionic contact Yamabe problem[A]. Rhode Island: Mem Amer Math Soc, 2014, 231.
  • 4Ivanov S, Vassilev D. The Lichnerrowicz and Obata first eigenvalue theorems and the Obata uniqueness result in the Yamabe problem on CR and quaternionic contact manifolds[J]. Nonlinear Anal, 2015, 126: 262-323.
  • 5Ivanov S, Minchev I, Vassilev D. Solution of the qc Yamabe equation on a 3-Sasakin manifold and the quaternionic Heisenberg group[J], arXiv:1504.03142vl.
  • 6Ivanov S, Vassilev D. Extremals for the Sobolev Inequality and the quacternionic contact Yamabe Problem[A]. Imperial College Press Lecture Notes[C]. Hackensack: World Scientific, 2011.
  • 7Apanasov B, Kim I. Cartan angular invariant and deformations of rank 1 symmetric spaces[J]. Mathematics, 2007, 198(2): 147-169.
  • 8Wang Wei. The Yamabe problem on quaternionic contact manifolds. Ann Mat Pura Appl, 2007, 186: 359-380.
  • 9Goldman W. Complex hyperbolic geometry[A]. Oxford Mathematical Monographs[C]. New York: Clarendon Press/Oxford University Press, 1999.
  • 10Biquard O. Asymptotically symmetric Einstein metrics[J]. Ast@risque, 2000, 265: 1-109.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部