摘要
主要研究了极大加代数的对称代数S上互补基本矩阵,给出本征积的概念,证明了S上的Laplace定理,由此推出所有互补基本矩阵的行列式相等,且任意两个互补基本矩阵的行列式中的非零项均一一对应相等.在一个互补基本矩阵的行列式中,对于确定非零项的任一置换,给出了在另一个互补基本矩阵的行列式中找到置换使其确定相同非零项的方法.
The paper mainly studies the complementary basic matrices in S. It first introduces the concepts of the intrinsic products and proves the Laplace's Theorem in S. Accordingly, the determinants of CB-matrices are the same and for any nonzero term in the determinant of one CB-matrix, there exists an equal term in the determinant of the other CB-matrix and vice versa. By the same time, for a given permutation which determines the nonzero term of the determinant of one CB-matrix, a method is given to find a permutation who determines the same nonzero term in the determinant of the other CB-matrix.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2016年第1期116-126,共11页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11271109)