期刊文献+

极大加代数的对称代数S上互补基本矩阵

Complementary basic matrices of the symmetrized algebra of max algebra
下载PDF
导出
摘要 主要研究了极大加代数的对称代数S上互补基本矩阵,给出本征积的概念,证明了S上的Laplace定理,由此推出所有互补基本矩阵的行列式相等,且任意两个互补基本矩阵的行列式中的非零项均一一对应相等.在一个互补基本矩阵的行列式中,对于确定非零项的任一置换,给出了在另一个互补基本矩阵的行列式中找到置换使其确定相同非零项的方法. The paper mainly studies the complementary basic matrices in S. It first introduces the concepts of the intrinsic products and proves the Laplace's Theorem in S. Accordingly, the determinants of CB-matrices are the same and for any nonzero term in the determinant of one CB-matrix, there exists an equal term in the determinant of the other CB-matrix and vice versa. By the same time, for a given permutation which determines the nonzero term of the determinant of one CB-matrix, a method is given to find a permutation who determines the same nonzero term in the determinant of the other CB-matrix.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2016年第1期116-126,共11页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11271109)
关键词 极大加代数 对称代数 互补基本矩阵 Laplace定理 行列式 max algebra symmetrized algebra complementary basic matrices Laplace's Theorem determinant
  • 相关文献

参考文献5

  • 1Fiedler M, Hall F J. Max algebraic complementary basic matrices[J]. Linear Algebra Appl, 2014, 457: 287-292.
  • 2Fiedler M, Hall F J. A note on permanents and generalized complementary basic matrices[J]. Linear Algebra Appl, 2012, 436: 3553-3561.
  • 3Baccelli F, Cohen G, Olsder G J, et al. Synchronization and Linearity: an Algebra for Discrete Event System[M]. New York: John Wiley and Sons, 1992.
  • 4Fiedler M, Intrinsic products and factorizations of matrices, Linear Algebra Appl, 2008, 428: 5-13.
  • 5Max Plus. Linear systems in (max,+) algebra[A]. In: Proceedings of the 29-th Conference on Decision and Control IEEE[C]. 1990, 151-156.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部