期刊文献+

No-reference image quality assessment based on nonsubsample shearlet transform and natural scene statistics

No-reference image quality assessment based on nonsubsample shearlet transform and natural scene statistics
原文传递
导出
摘要 A novel no-reference(NR) image quality assessment(IQA) method is proposed for assessing image quality across multifarious distortion categories. The new method transforms distorted images into the shearlet domain using a non-subsample shearlet transform(NSST), and designs the image quality feature vector to describe images utilizing natural scenes statistical features: coefficient distribution, energy distribution and structural correlation(SC) across orientations and scales. The final image quality is achieved from distortion classification and regression models trained by a support vector machine(SVM). The experimental results on the LIVE2 IQA database indicate that the method can assess image quality effectively, and the extracted features are susceptive to the category and severity of distortion. Furthermore, our proposed method is database independent and has a higher correlation rate and lower root mean squared error(RMSE) with human perception than other high performance NR IQA methods.
出处 《Optoelectronics Letters》 EI 2016年第2期152-156,共5页 光电子快报(英文版)
基金 supported by the National Natural Science Foundation of China(No.61405191) the Jilin Province Science Foundation for Youths of China(No.20150520102JH)
关键词 scene trained distortion utilizing perception severity distorted normalized assessing category 图像质量评价 统计特征 自然场景 采样 支持向量机 质量评价方法 特征向量 结构相关
  • 相关文献

参考文献19

  • 1H. R. Sheikh, A. C. Bovik and L. Cormack, IEEE Transactions on Image Processing 14, 1918 (2005).
  • 2T. Brandao and M. P. Queluz, Signal Processing 88, 822 (2008).
  • 3A. Mittal, G. S. Muralidhar and A. C. Bovik, IEEE Signal Processing Letters 19, 75 (2012).
  • 4Q. B. Sang, D. L. Liang, X. J. Wu and C. F. Li, Journal of Optoelectronics'Laser 25, 595 (2014).
  • 5L. Y. Zhou and Z. B. Zhang, Optik 125, 5677 (2014).
  • 6N. D. Narvekar and L. J. Karam, IEEE Transactions on Image Processing 20, 2678 (2011).
  • 7Y. Li, L. M. Po, X. Xu and L. Feng, Signal Processing Image Communication 29, 748 (2014).
  • 8A. K. Moorthy and A. C. Bovik, IEEE Signal Process- ing Letters 17, 513 (2010).
  • 9A. K. Moorthy and A. C. Bovik, IEEE Transactions on Image Processing 20, 3350 (2011).
  • 10M. A. Saad, A. C. Bovik and C. Charrier, IEEE Trans- actions on Image Processing 21, 3339 (2012).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部