期刊文献+

基于Android平台的防镜头抖动运动目标检测

下载PDF
导出
摘要 为了有效地解决手持设备容易出现镜头抖动的问题,本文提出一种基于Android平台的防镜头抖动的运动目标检测算法。首先初始化Vi Be(Visual Background Extractor)背景模型,继而运用KLT(Kanade-Lucas-Tomasi Feature Tracker)方法计算输入图像相对于背景模型的偏移量,建立运动补偿后的背景模型,最后检测运动目标,实时背景更新。该算法被运用到了Android平台上,实验结果显示本文算法在镜头抖动情况下仍能准确提取运动目标。
出处 《数据通信》 2016年第1期31-35,共5页
基金 国家自然科学基金(No.60972063) 国家科技重大专项(2011ZX03002-004-02) 宁波市科技创新团队(2011B81002) 浙江省信息与通信工程重中之重学科开放基金项目(XKX11410)
  • 相关文献

参考文献9

  • 1Schwarz L A, Mkhitaryan A, Matens D, et al. Human skeleton tracking from depth data using geodesic distances and optical flow[J]. Image and Vision Computing, 2012, 30(3): 217-226.
  • 2Brutzer S, Hoferlin B, Heidemann G. Evaluation of background subtraction techniques for video surveillance [C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2011:1937-1944.
  • 3Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C] IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). 1999:246-252.
  • 4Jun-Qin W. An Adaptive Frame Difference Method for Human Tracking [J]. AISS: Advances in Information Sciences and Service Sciences, 2012, 4(1): 381-387.
  • 5熊欧,郑紫微,胡峰.基于Android平台的视频运动目标检测系统[J].数据通信,2014(5):10-14. 被引量:4
  • 6Jin Y, Tao L, Di H, et al. Background modeling from a free-moving camera by Multi-Layer Homography AlgorithmiC]. IEEE International Conference on Image Processing. 2008: 1572-1575.
  • 7M. Van Droogenbroeck and O. Paquot. Background Subtraction: Experiments and Improvements for ViBe. In Change Detection Workshop (CDW), Providence, Rhode Island, June 2012.
  • 8Olivier Barnich ,Marc Van Droogenbroeck. A powerful random technology to estimate the background in video sequences [J]. Change Detection Workshop,2012:16-21.
  • 9Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the algorithm [J]. technical report, 1999:254-286.

二级参考文献9

  • 1Fejes S,Davis L S.What can projections of flow fields tell us about the visual motion[C]//Computer Vision,1998.Sixth International Conference on.IEEE,1998:979-986.
  • 2Paragios N,Deriche R.Geodesic active contours and level sets for the detection and tracking of moving objects[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,2000,22(3):266-280.
  • 3Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C]//Computer Vision and Pattern Recognition,1999.IEEE Computer Society Conference on.IEEE,1999,2.
  • 4Zivkovic Z.Improved adaptive Gaussian mixture model for background subtraction[C]//Pattern Recognition,2004.ICPR2004.Proceedings of the 17th International Conference on.IEEE,2004,2:28-31.
  • 5Wren C R,Azarbayejani A,Darrell T,et al.Pfinder:Real-time tracking of the human body[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,1997,19(7):780-785.
  • 6Han B,Davis L S.Density-based multifeature background subtraction with support vector machine[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,2012,34(5):1017-1023.
  • 7王晓凯,李锋.改进的自适应中值滤波[J].计算机工程与应用,2010,46(3):175-176. 被引量:82
  • 8李娟,邵春福,杨励雅.基于混合高斯模型的行人检测方法[J].吉林大学学报(工学版),2011,41(1):41-45. 被引量:20
  • 9李钰,苏育挺.基于Android平台的行人检测系统[J].电子测量技术,2012,35(12):99-101. 被引量:4

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部