摘要
为了解决高维小样本的特征选择问题,该文结合文化基因算法(Memetic algorithm,MA)与最小二乘支持向量机(Memetic algorithm and least squares support vector machine,MALSSVM),设计了一种封装式(Wrapper)特征选择算法。该方法将全局搜索与局部搜索相结合作为求解策略,利用了最小二乘支持向量机易于求解的特点,构造分类器,以分类的准确率作为文化基因算法寻优过程中适应度函数的主要成分。实验表明,MA-LSSVM可以较高效稳定地获取对分类贡献较大的特征,降低数据维度,提高了分类效率。
To improve the feature selection problem of the high dimensional small sample data, this paper combines memetic algorithm (MA)and least squares support vector machine (LS-SVM)to design a wrapper feature selection method (MA-LSSVM). The solving strategy of the proposed method is composed by global search and local search, which utilizes the speciality of being easy to search optimal solution to construct classifiers and to regard classification accuracy as the main component of memetic algorithm fitness function in the optimization process. The experimental results demonstrate that the MA-LSSVM can be more efficient and stable to obtain features larger contribution to the classification precision, reducing the data dimension and improving the classification efficiency.
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2016年第1期10-16,共7页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金(61272419)
江苏省未来网络前瞻性研究项目(BY2013095-3-02)
江苏省产学研前瞻性项目(BY2014089)
关键词
特征选择
文化基因算法
最小二乘支持向量机
高维小样本数据
机器学习
全局搜索
局部搜索
feature selection
memetic algorithm
least squares support vector machine
highdimensional small sample data
machine learning
global search
local search