期刊文献+

Fault detection of flywheel system based on clustering and principal component analysis 被引量:5

Fault detection of flywheel system based on clustering and principal component analysis
原文传递
导出
摘要 Considering the nonlinear, multifunctional properties of double-flywheel with closed- loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of "integrated power and attitude control" system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS) can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the teachability-plot. Finally, the last step of proposed model is used to define the rela- tionship of parameters in each operation through the principal component analysis (PCA) method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system. Considering the nonlinear, multifunctional properties of double-flywheel with closed- loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of "integrated power and attitude control" system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS) can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the teachability-plot. Finally, the last step of proposed model is used to define the rela- tionship of parameters in each operation through the principal component analysis (PCA) method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第6期1676-1688,共13页 中国航空学报(英文版)
基金 supported by the National Basic Research Program of China(No.2012CB720003)
关键词 Attitude control Cluster analysis Energy storage Fault detection Flywheels Attitude control Cluster analysis Energy storage Fault detection Flywheels
  • 相关文献

参考文献6

二级参考文献56

共引文献136

同被引文献39

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部