期刊文献+

基于梯度L0稀疏正则化的图像盲去模糊算法 被引量:3

Image blind deblurring using L0 sparse regularization
下载PDF
导出
摘要 图像的盲复原旨在从输入的模糊图像中估计出模糊核,并以此恢复出原清晰图像。本文分别采用近似L0和L1范数对待估清晰图像的梯度域和点扩散函数的稀疏性进行先验约束,后续的迭代过程中分别利用频域直接求解、分裂Bregman方法以及Shrinkage收缩阈值操作符进行优化。本文采用的表达形式既无需显性地在迭代过程中通过额外步骤提取出强梯度特征(例如冲击滤波器),又能保证在较少的迭代次数中达到收敛。最终通过实验结果验证了本文中采用的方法在图像恢复质量和迭代速度方面都有所改善。 Image blind deblurring aims to estimate the blur kernel store the latent sharp one, which is a typically ill-posed problem. In ble, many methods are proposed to formulate the cost function by paper, we introduce a framework applying LO and L1 norm sparsity from the input blurry order to make it more image and to re- robust and relia- representing the sparsity for the latent image and priors. In this blur kernel re- spectively. Effective numerical approaches including split Bregman and shrinkage thresholding methods are used in the optimization. The proposed scheme is proved to have better restoration quality and speed corn- paring with other methods used in the experiment.
作者 朱骋 周越
出处 《中国体视学与图像分析》 2015年第4期361-368,共8页 Chinese Journal of Stereology and Image Analysis
关键词 图像去模糊 盲复原 稀疏性先验约束 分裂Bregman算法 image blind deblurring image restoration sparsity prior split Bregman method
  • 相关文献

参考文献16

  • 1田青,王蓉.单帧图像的超分辨率重建技术[J].中国体视学与图像分析,2012,17(4):313-318. 被引量:2
  • 2焦莉莉,刘丽,马苗.改进的自适应阈值小波图像抑噪算法[J].中国体视学与图像分析,2009,14(2):152-155. 被引量:4
  • 3Fergus R, Barun S. Removing camera shake from a single photograph [J].ACM Transactions on Graphics (TOG), 2006,3(25) : 787 -794.
  • 4Shan Q, Jia J, Agarwala A. High-quality motion deblur- ring from a single image [J]. SIGGRAPH, ACM, 2008: 1 -10.
  • 5Krishnan D, Fergus R. Fastimage deconvolution using hy- per-laplacian [ C .] //Proceedings of Neural Information Processing Systems Blurred Lut Nr, 2009.
  • 6Kotera J, Sroubek F, Milanfar P. Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors [ M ] . Computer Analysis of Images and Patterns Springer Berlin Heidelberg, 2013:59 -66.
  • 7Krishnan D, Tay T, Fergus R. Blind decon~olution usinga normalized sparsity measure [ C ]//IEEE CVPR, 2011 : 233 -240.
  • 8Xu L, Zheng S, Jia J. Unnatural L0 sparse representation for natural image dehlurring [ C]//IEEE CVPR, 2013: 1107 - 1114.
  • 9Goldstein T, Stanley O. The split Bregman method for L1- regularized problems I J]. SIAM Journal on Imaging Sci- ences 2.2, 2009 : 323 - 343.
  • 10Levin A, Yair W. Understanding blind deconvolution algo- rithms [ J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33, 2011, (12) : 2354 - 2367.

二级参考文献22

共引文献4

同被引文献7

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部