摘要
令G是一个有限图,H是G的无核子群,D是形如HgH(gH)的一些双陪集的并,且满足D=D-1。记(Cos(G,H,D)表示G关于H和D的陪集图,A=Aut(Cos(G,H,D))。用RH(G)表示G在H的全体右陪集所在的集合Ω=[G:H]上的右乘置换表示,σ(g)表示g∈G通过共轭作用诱导在G上的自同构。本文不但证明了NA(RH(G))=RH(G)Aut(G,H,D)且RH(G)∩Aut(G,H,D)=I(H),其中Aut(G,H,D)={α∈Aut(G)|Hα=H,Dα=D},I(H)={σ(h)|h∈H},而且证明了Cos(G,H,D)是一个CI-图当且仅当对任意的σ∈SΩ,满足RH(G)σ≤A,必存在a∈A使得RH(G)a=RH(G)σ。作为对本文两个定理的应用,本文考虑了一类线性群上陪集图的CI-性问题及其在同构意义下的计数问题。
Let Gbe a finite group,Ha core-free subgroup of Gand Da union of several double-cosets of the form HgH with gH such that D=D-1.Let Cos(G,H,D)be the coset graph of G with respect to Hand D,and let A=Aut(Cos(G,H,D)).Denote the right multiplication action of GonΩ=[G:H]by RH(G),the set of right cosets of H in G,and denote the automorphism of Ginduced by the conjugate of g∈Gon Gbyσ(g).In this paper,it is shown that NA(RH(G))=RH(G)Aut(G,H,D)and RH(G)∩ Aut(G,H,D)=I(H),where Aut(G,H,D)= {α∈Aut(G)|Hα=H,Dα=D}and I(H)={σ(h)|h∈H},and it is also shown that Cos(G,H,D)is a CI-graph if and only if for anyσ∈SΩwith RH(G)σ≤A,and that there exists a∈A such that RH(G)a=RH(G)σ.The CI-propety problem and isomorphism count problem of a class coset graphs on linear groups are considered in application.
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2015年第4期68-72,共5页
Journal of Guangxi Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11301159)
河南省教育厅科学与技术重点项目(13A110543)
河南师范大学青年教师基金项目(2012QK01)