期刊文献+

种群规模自适应控制的中心引力优化 被引量:1

Central Force Optimization with Self-Adaptive Control Strategy of Population Size
原文传递
导出
摘要 在中心引力算法的设计中,较大的种群规模能提高最优解的精度,但会降低个体的搜索空间.针对中心引力算法提出了一种自适应控制种群的中心引力算法,在算法的运行过程中,根据算法的表现使每一代增大或减小种群的规模.将聚类算法和佳点集算法融合到增加\删除算子中,使得算法可以自适应地兼顾有效性和多样性.数值结果表明,新算法在求解精度和收敛速度上不弱于对比算法. In the central force optimization( CFO),a large number of population leads to the accuracy of getting an optimal solution. However,owing a large population size will not be a good idea in the case where the search space is small. This article proposed an self-adaptive population size based CFO( APCFO),in which the population pool size either grown or shrunk at every iteration based on the performance status of the algorithm. The clustering algorithm and good point set method are used in the design of increase / decrease operator,which considers the effectiveness and diversity adaptively. Experiment shows that the new algorithm no worse than other classical algorithms.
作者 刘杰 王宇平
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第6期15-19,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61272119 11301414 11226173)
关键词 中心引力优化 种群规模 佳点集 聚类 全局优化 central force optimization population size good point set cluster global optimization
  • 相关文献

参考文献6

  • 1Formato R A. Central force optimization: a new metaheu- ristic with applications in applied electromagnetics [ J ]. Progress in Electromagnetics Research, 2007, 77 (2 : 425 -449.
  • 2Richard A F. Central force optimization with variable ira-tial probes and adaptive decision space [ J ]. Applied Mathematics and Computation, 2011, 217 (7) : 8866- 8872.
  • 3Vlasis K K, Christos P. Katsaras. A saw-tooth genetic al- gorithm combining the effects of variable population size and reinitialization to enhance performance [ J ]. IEEE Transaction on Evolutionary Computation, 2006, 10( 1 ) : 19 -28.
  • 4Leong W F, Yen G G. PSO-based muhiobjective optimi- zation with dynamic population size and adaptive local ar- chives[ J]. IEEE Transaction on Systems, Man, and Cy- bernetics-Part B: Cybernetics, 2008, 38 (5) : 1270-1293.
  • 5王蓉芳,焦李成,刘芳,杨淑媛.自适应动态控制种群规模的自然计算方法[J].软件学报,2012,23(7):1760-1772. 被引量:15
  • 6Yao Xin, Liu Yong, Lin Guangming. Evolutionary pro- gramming made faster [ J]. IEEE Transaction on Evolu-tionary Computation, 1999, 3(2) : 82-102.

二级参考文献15

  • 1Castro LN. Fundamentals of natural computing: An overview. Physics of Life Reviews, 2007,4(1):1-36. [doi: 10.1016/j.plrev.2006. 10.002].
  • 2Arabas J, Michalewicz Z, Mulawka J. GAVaPS--A genetic algorithm with varying population Size. In: Fogel D, ed. Proc. of the 1st IEEE Conf. on Evolutionary Computation. Orlando: IEEE Press, 1994. 73-78. [doi: 10.1109/ICEC.1994.350039].
  • 3Shi XH, Wan LM, Lee HP, Yang XW, Wang LM, Liang YC. An improved genetic algorithm with variable population size and a PSO-GA based hybrid evolutionary algorithm. In: Pan ZS, Chen SC, eds. Proc. of the 2nd Int'l Conf. on Machine Learning and Cybernetics. Xi'an: IEEE Press, 2003. 1735-1740. [doi: 10.1109/ICMLC.2003.1259777].
  • 4Teo J. Exploring dynamic self-adaptive populations in differential evolution. Soft computing--A fusion of foundations. Methodologies and Applications, 2006,10(8):673-686. [doi: 10.1007/s00500-005-0537-1 ].
  • 5Brest J, Zamuda A, Boskovic B, Maucec MS, Zumer V. High-Dimensional real-parameter optimization using self-adaptive differential evolution algorithm with population size reduction. In: Suganthan PN, ed. Proc. of the IEEE Congress on Evolutionary Computation. Hong Kong: IEEE Press, 2008. 2032-2039. [doi: 10.1109/CEC.2008.4631067].
  • 6Soudan B, Saad M. An evolutionary dynamic population size PSO implementation. In: Rifai S, Shalati S, eds. Proc. of the 3rd Int'l Conf. on Information and Communication Tcclmologies: From Theory to Applications. Damascus: ICTTA, 2008. 1-5. [doi: 10.1109/ICTTA.2008.4530016].
  • 7Hsieh ST, Sun TY, Liu CC, Tsai SJ. Solving large scale global optimization using improved particle swarm optimizer. In: Suganthan PN, ed. Proc. of the IEEE Congress on Evolutionary Computation. Hong Kong: IEEE Press, 200g. 1777-1784. [doi: 10.1109/CEC.2008.4631030].
  • 8Leong WF, Yen GG. PSO-Based multiobjective optimization with dynamic population size and adaptive local archives. IEEE Trans. on Systems, Man, and Cybernetics--Part B: Cybernetics, 2008,38(5):1270-1293. [doi: 10.1109/TSMCB.2008.925757].
  • 9Tsoularis A, Wallace J. Analysis of logistic growth models. Mathematical Biosciences, 2002,179(1):21-55. [doi: 10.1016/S0025- 5564(02)00096-2].
  • 10Arumugam MS, Rao MVC. On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 2008,8(1)'324-336. [doi: 10.1016/j.asoc.2007.01.010].

共引文献14

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部