期刊文献+

基于协同谱聚类的推荐系统托攻击防御算法

Shilling Attack Defense Algorithm for Recommender System Based on Spectral Co-Clustering
原文传递
导出
摘要 提出了一种基于协同谱聚类的推荐系统托攻击防御算法.该算法首先使用谱聚类方法对协同聚类算法进行改进,以在用户和项目2个维度上同时进行聚类;接着在聚类基础上结合分级偏离平均度对用户进行项目推荐.实验测试结果表明,在同等托攻击规模的情况下,该算法可以降低实施托攻击的用户和攻击数据对系统推荐结果的影响. An algorithm for recommender system based on spectral co-clustering was proposed to defend shilling attacks. The proposed algorithm maintains spectral clustering and co-clustering priors and allows a mixed membership in user and item clusters. The rating deviations were used for mean agreement based on the co-clustering results to recommend for users. Experimental results demonstrated that under the same shilling attack dimensions,our algorithm could decrease the shilling attack affects to recommender systems apparently.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第6期81-86,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61121061)
关键词 协同谱聚类 分级偏离平均度 托攻击 推荐系统 spectral co-clustering rating deviation from mean agreement shilling attack recommender system
  • 相关文献

参考文献8

  • 1Chevalier J A, Mayzlin D. The effect of word of mouth on sales: online book reviews[ J]. Journal of Marketing Re- search, 2006, 43 (3) : 345-354.
  • 2O'Mahony M, Hurley N, Kushmerick N, et al. Collabo- rative recommendation: a robustness analysis [ J ]. ACM Transactions on Internet Technology (TOIT), 2004, 4(4) : 344-377.
  • 3Lain S K, Riedl J. Shilling recommender systems for fun and profit[ C ]//Proceedings of the 13^th international con- ference on World Wide Web. (2004) ACM Press: New York, 2004: 393-402.
  • 4Abas A R. On determining efficient finite mixture models with compact and essential components for clustering data [Jl. Egyptian Informatics Journal, 2013, 14 (1): 79-88.
  • 5李聪,骆志刚.基于数据非随机缺失机制的推荐系统托攻击探测[J].自动化学报,2013,39(10):1681-1690. 被引量:9
  • 6Von Luxburg U. A tutorial on spectral clustering [ J ]. Statistics and Computing, 2007, 17(4) : 395- 416.
  • 7Chen Wenyen. Parallel spectral clustering in distributed systems[ J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011, 33(3) : 568-586.
  • 8徐森,卢志茂,顾国昌.使用谱聚类算法解决文本聚类集成问题[J].通信学报,2010,31(6):58-66. 被引量:15

二级参考文献30

  • 1唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3TIAN Zheng,LI XiaoBin,JU YanWei.Spectral clustering based on matrix perturbation theory[J].Science in China(Series F),2007,50(1):63-81. 被引量:19
  • 4罗会兰,孔繁胜,李一啸.聚类集成中的差异性度量研究[J].计算机学报,2007,30(8):1315-1324. 被引量:36
  • 5Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 6Su X Y,Khoshgoftaar T M.A survey of collaborative filtering techniques.Advances in Artificial Intelligence,2009,2009:1-20.
  • 7Mobasher B,Burke R,Bhaumik R,Sandvig J J.Attacks and remedies in collaborative recommendation.IEEE Intelligent Systems,2007,22(3):56-63.
  • 8Lam S K,Riedl J.Shilling recommender systems for fun and profit.In:Proceedings of the 13th International Conference on World Wide Web.New York,USA:ACM,2004.393-402.
  • 9O'Mahony M P,Hurley N J,Kushmerick N,Silvestre G C M.Collaborative recommendation:a robustness analysis.ACM Transactions on Internet Technology,2004,4(4):344-377.
  • 10Huang Z,Chen H,Zeng D.Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering.ACM Transactions on Information Systems,2004,22(1):116-142.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部