期刊文献+

丁型肝炎病毒(HDV)天然序列和G11C突变序列的转录折叠动力学研究 被引量:1

Cotranscriptional Folding Kinetics of the Wild-Type and G11C Mutation HDV Ribozyme
原文传递
导出
摘要 在转录折叠条件下,丁型肝炎病毒(HDV)的自剪切活性的发挥受到转录过程中形成的中间态结构、转录速率、突变位点等的影响.本文采用转录折叠动力学方法研究了HDV的天然(wild-type,wt)序列在不同转录速率下的转录折叠动力学行为,并分析了G11C突变对转录过程的影响.研究结果表明,虽然HDV的天然序列和G11C突变序列的转录折叠过程都存在快慢两条路径,但是对于HDV的天然序列,增大转录速率可以降低其慢速折叠路径上的RNA占据几率,而对于G11C突变序列,增大转录速率反而使得更多的RNA经过慢速路径形成天然态结构,并且在转录完全结束以后,HDV的天然序列要比G11C突变序列更快速地形成天然态结构. Under the cotranscription conditions, there are many factors affect the self-cleavage activity of the hep- atitis delta virus (HDV), such as the intermediate states, the transcription rate, the mutation sites and so on. In this study, we studied the folding kinetics of the wild-type (wt) HDV during the transcription with different transcription rates by the recently developed cotranscription folding kinetics theory. We also analysized the effects of the G11C mu- tation on the cotranscription folding process. The results suggest that, for the two sequences, there are two cotrans- cription folding pathways: a fast pathway and a slow pathway. For the wild-type sequence, less RNA sequence (RNAs) will fold through the slow pathway when increasing the transcription rate, while, for the G11C mutation se- quence, it is just the opposite. What' s more, at the end of the cotranscription, the wild-type HDV can form the native structures more quickly than G11C mutation sequence.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2016年第1期69-77,共9页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(31270761)
关键词 转录折叠 主方程方法 HDV 突变 cotranscription folding master equation method hepatitis delta virus (HDV) mutation
  • 相关文献

参考文献25

  • 1ZAMORE P D. Ancient pathways programmed bysmall RNAs[J]. Science,2002, 296(5571): 1265-1269.
  • 2DOHERTY E A,DOUDNA J A. Ribozyme structuresand mechanisms [J]. Annual Review of Biophysicsand Biomolecular Structure, 2001,30(1) : 457-475.
  • 3PLASTERK R H A. RNA Silencing: The genome’simmune system[J]. Science,2002,296(5571) : 1263-1265.
  • 4AMARE A. RUPERT P B, FERRE A R. Crystalstructure of a hairpin ribozyme inhibitor complexwith implications for catalysis[J]. Nature. 2001,410(6830): 780-786.
  • 5BAN N, NISSEN P, HANSEN J, et al. The completeatomic structure of the large ribosomal subunit at 2.4A resolution[J], Science,2000,289(5481) : 905-920.
  • 6YUSUPOV M M, YUSUPOVA G Z,BAUCOM A,et al. Crystal structure of the ribosome at 5.5 A reso-lution[J]. Science,2001,292(5518): 883-896.
  • 7ZHANG L, BAO P,LEIBOWITZ M J,et al. Slowformation of a pseudoknot structure is rate limiting inthe productive cotranscriptional folding of the self-spli-cing Candida intron[J], RNA, 2009,15(11): 1986-1992.
  • 8PAN T, ARTSIMOVITCH I,FANG X W, et al.Folding of a large ribozyme during transcription andthe effect of the elongation factor NusA[J]. Proc NatlAcad Sci USA, 1999,96(17): 9545-9550.
  • 9WONG T N, SOSNICK T R,PAN T. Folding ofnoncoding RNAs during transcription facilitated bypausing-induced nonnative structures [J], Proc NatlAcad Sci USA,2007,104(46): 17995-18000.
  • 10PAN T,SOSNICK T. RNA folding during transcrip-tion [J], Annu Rev Biophys Biomol Struct,2006,35: 161-175.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部