期刊文献+

镶嵌有纳米硅的SiN_x薄膜光致发光的温度依赖特性研究

Temperature-Dependent Photoluminescence Property Studies of SiN_x Films with nc-Si
下载PDF
导出
摘要 采用对靶磁控溅射法在单晶硅衬底上沉积镶嵌有纳米硅的氮化硅薄膜,然后在形成气体FG(10%H2,90%N2)气氛中进行450℃常规热退火50min。通过荧光光谱仪测得的稳态/瞬态光致发光(PL)谱研究了镶嵌有纳米硅的氮化硅(SiNx)薄膜样品光致发光特性。结果表明,样品的发光过程可以归因于纳米硅的量子限制效应发光和与缺陷相关的发光。随着激发光能量的增加,PL谱峰位发生蓝移,表明较小粒度的纳米硅发光比例增加;温度的降低会抑制非辐射复合过程,提高辐射复合几率,因此发光寿命延长,发光强度呈指数增加;随着探测波长的减小,样品的发光寿命则明显缩短,表明纳米硅的量子限制效应发光对温度有很强的依赖性。 Silicon nitride(SiNx)films containing nanocrystalline silicon(nc-Si)were deposited on crystalline silicon substrate by facing-target sputtering technique.Thermal annealing process was performed at 450 ℃for 50 min in a conventional furnace under FG(10%H2,90%N2)ambient.The photoluminescece(PL)properties of the SiNxfilms with nc-Si were investigated by steady/transient PL spectra measurements by Fluorescence spectrometer with different temperatures.The PL processes could be attributed to the quantum confinement effect of nc-Si and the defects in the film.The PL peak position exhibits a small blue shift with the increasing of the excitation energy,which indicates that the PL portion of the nc-Si increased with smaller size.In addition,the PL lifetime increases and the PL intensity exhibits exponential increase as a result of the decreased temperature which supressed the nonradiative recombination process and then improved the radiative recombination.The PL lifetime of the film significantly reduces with the decreasing of the detection wavelength,which indicates that the PL process related to the the quantum confinement effect strongly depends on temperature.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第3期653-656,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(60878040) 河北省自然科学基金项目(F2013201250) 河北省科技厅项目(12963930D)资助
关键词 纳米硅/氮化硅 光致发光 温度依赖特性 nc-Si/SiNx Photoluminescence properties The temperature dependent
  • 相关文献

参考文献24

  • 1Ray S K, Maikap S, Banerjee W, et al. J. Phys. D: Appl. Phys., 2013, 46: 153001.
  • 2Patrice Miska, Manuel Dossot, Thi D Nguyen, et al. J. Phys. Chem. C, 2010, 114: 17344.
  • 3Jayatilleka H, Diamare D, Wojdak M, et al. Journal of Applied Physics, 2011, 110: 033522.
  • 4Lu Peng, Wang Xiaotong, Yang Shengzhi, et al. Chin. SCi. Bull. , 2014, 59(34): 4758.
  • 5lin I. H, Sun X Z, Tao R, et al. Journal of Applied Physics, 2011, 110(7) : 073109.
  • 6Katerina Kusova, Lukas Ondic, Eva Klimesova, et al. Applied Physics Letters, 2012, 1011 143101.
  • 7Viktor Danko, Katerina Michailovska, Ivan Indutnyi, et al. Nanoseale Research Letters, 2014, 9: 165.
  • 8Lin Gongru, Psi Yihao, Lin Chengtao, et al. Applied Physics Letters, 2010, 96: 263514.
  • 9Sombrio G, Franzen P L, Maltez R I., et al. Journal of Physics D: Applied Physics, 2013, 46: 235106.
  • 10Sain B, Das D. Phys. Chem. Chem. Phys. , 2013, 15: 3881.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部