期刊文献+

基于KSFDA-SVDD的非线性过程故障检测方法 被引量:9

Nonlinear process fault detection based on KSFDA and SVDD
下载PDF
导出
摘要 慢特征分析(SFA)是一种无监督的线性学习算法,没有考虑过程数据的类别信息和非线性特征。针对此问题,提出一种基于核慢特征判别分析(KSFDA)和支持向量数据描述(SVDD)的非线性过程故障检测方法KSFDA-SVDD。该方法首先利用核技巧将数据从原始空间映射到高维空间,然后通过最大化正常工况数据和故障模式数据之间伪时间序列的时间变化同时最小化正常工况数据内部伪时间序列的时间变化计算判别矩阵,最后利用SVDD描述采用判别矩阵降维后的正常工况数据的分布域,构建监控统计量检测过程故障。在连续搅拌反应器(CSTR)过程上的仿真结果表明所提出方法的故障检测性能优于传统的KPCA方法。 Slow feature analysis (SFA) is an unsupervised liner learning algorithm and lacks the ability to consider class label information and data nonlinearity. In order to solve this problem, a novel nonlinear process fault detection method is proposed based on kernel slow feature discriminant analysis and support vector data description (KSFDA-SVDD). Firstly, process data is mapped from the original space into a high dimension feature space via kernel trick. Then, the discriminant matrix that maximizes the temporal variation of between-class pseudo-time series and minimizes the temporal variation of within-class pseudo-time series simultaneously is calculated. Finally, SVDD is applied to describe the distribution region of normal operation data which is projected to the discriminant matrix and one monitoring index is constructed to indicate the occurrence of the abnormal event. Simulation results on the continuous stirring tank reactor (CSTR) process show that the proposed method is more effective than the traditional KPCA method in terms of detecting faults.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第3期827-832,共6页 CIESC Journal
基金 国家自然科学基金项目(61273160 61403418) 山东省自然科学基金项目(ZR2014FL016) 中央高校基本科研业务费专项资金(14CX06132A)~~
关键词 慢特征分析 判别分析 支持向量数据描述 非线性过程 故障检测 slow feature analysis discriminant analysis support vector data description nonlinear process fault detection
  • 相关文献

参考文献17

  • 1GARCIA-ALVAREZ D, FUENTE M J, SAINZ G I. Fault detection and isolation in transient states using principal component analysis[J]. Journal of Process Control, 2012, 22 (3): 551-563.
  • 2QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36 (2): 220-234.
  • 3CAI L F, TIAN X M, CHEN S. A process monitoring method based on noisy independent component analysis[J]. Neurocomputing, 2014, 127 (3): 231-246.
  • 4GENG Z Q, ZHU Q X. Multiscale nonlinear principal component analysis and its application for chemical process monitoring[J]. Industrial and Engineering Chemistry Research, 2005, 44 (10): 3585-3593.
  • 5NGUYEN V H, GOLINVAL J C. Fault detection based on kernel principal component analysis[J]. Engineering Structures, 2010, 32 (11): 3683-3691.
  • 6ZHAO C H, GAO F R. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 133 (6): 1-16.
  • 7ZHANG Y W, ZHANG L J, ZHANG H L. Fault detection for industrial processes[J]. Mathematical Problems in Engineering, 2012, 2012 (1): 1-18.
  • 8WISKOTT L, SEJNOWSKI T J. Slow feature analysis: unsupervised learning of invariances[J]. Neural Computation, 2002, 14 (4): 715-770.
  • 9WISKOTT L. How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis[J]. The Journal of Machine Learning Research, 2013, 14 (1): 3683-3719.
  • 10WU C, DU B, ZHANG L. Slow feature analysis for change detection in multispectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (5): 2858-2874.

同被引文献86

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部