期刊文献+

公有云环境基于路径聚簇的工作流费用优化算法

Workflow Cost Optimization Scheduling Algorithm Based on Path Clustering in Public Cloud
下载PDF
导出
摘要 针对工作流在公有云环境执行的费用过高问题,提出基于路径聚簇的费用优化调度算法。算法结合工作流的任务资源、任务依赖等特征,计算任务的最早开始时间、最早完成时间和优先级,聚簇最早完成时间和优先级高的任务进行统一放置,从而减少任务间的数据通信量,降低工作流的执行时间和费用,从而提高机构的执行效率。平台仿真显示改进后算法可有效地降低执行工作流的花费,提高执行工作流的综合性能比。 To solve outrageous cost of workflow execution in public cloud environment, proposes a workflow scheduling algorithm based on path clustering on the same path. Combining tasks' resources requirements and tasks dependence of workflow will be scheduled, computed earliest start time, earliest finish time and priority of tasks, clustered tasks have the highest earliest finish time and priority, thus reduces data traffic between tasks, shortens workf^ow makespan and reduce workfiow running cost, and improves organization efficiency. Platform emulation shows that the improved algorithm can effectively reduce cost of executing workflow, improve the comprehensive performance of workflow execution.
作者 王彬
出处 《现代计算机》 2016年第2期8-12,共5页 Modern Computer
关键词 公有云 工作流调度 路径聚簇 费用优化 Public Cloud Workflow Scheduling Path Clustering Cost Optimaztion
  • 相关文献

参考文献11

  • 1Juve G, Chervenak A, Deelman E, et al. Characterizing and Profiling Scientific Workflows[J]. Future Generation Computer Systems, 2013, 29(3): 682-692.
  • 2Lee Y C, Han H, Zomaya A Y, et al. Resource-Efficient Workflow Scheduling in Clouds[J]. Knowledge-Based Systems, 2015, 80: 153-162.
  • 3Zhao Y, Li Y, Raieu I, et al. Enabling Scalable Scientific Workflow Management in the Cloud[J]. Future Generation Computer Systems, 2015, 46: 3-16.
  • 4Liu L, Zhang M, Lin Y, et al. A Survey on Workflow Management and Scheduling in Cloud Computing[C]//Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on. IEEE, 2014: 837-846.
  • 5Durillo J J, Prodan R. Multi-objective Workflow Scheduling in Amazon EC2[J]. Cluster Computing, 2014, 17(2): 169-189.
  • 6Chen W, da Silva R F, Deelman E, et al. Using Imbalance Metrics to Optimize Task Clustering in Scientific Workflow Executions[J]. Future Generation Computer Systems, 2015, 46: 69-84.
  • 7Chen W, Da Silva R F, Deelman E, et al. Balanced Task Clustering in Scientific Workflows[C]. eSeienee (eSeienee), 2013 IEEE 9th International Conference on. IEEE, 2013: 188-195.
  • 8Bitteneourt L F, Madeira E R M. A Performance-Oriented Adaptive Scheduler for Dependent Tasks on Grids[J]. Concurrency and Computation: Practice and Experience, 2008, 20(9): 1029-1049.
  • 9Calheiros R N, Ranjan R, Beloglazov A, et al. CloudSim: a Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms[J]. Software: Practice and Experience, 2011, 41(1): 23-50.
  • 10Deelman E, Vahi K, Juve G, et al. Pegasus, a Workflow Management System for Science Automation[J]. Future Generation Computer Systems, 2015, 46: 17-35.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部