期刊文献+

风电-压缩空气储能系统火用和火用成本分析模型 被引量:17

Exergy and exergy cost analysis model for wind-compressed air energy storage system
下载PDF
导出
摘要 风电-压缩空气联合运行系统中存在多种能量输入,从而使得对其系统性能的评价更为复杂。为了准确衡量风能在系统中的存储、释放、转换特性,本文基于热力学第二定律和热经济学原理,在火用成本分析方法基础上提出利用风能火用流比例系数α和风能火用成本比例系数γ评价风电-压缩空气储能联合运行系统中风电存储能耗特性和经济性。实例计算结果表明:风电-压缩空气储能系统的单位发电火用成本为1.038元/(kW·h),其中释放存储的风能所占单位发电火用成本比例85.71%,该比例会随着风电成本和天然气价格的增加而降低。该方法可在系统中存在不同能量输入时详细地描述风能在存储和释放过程中的能耗特性和存储风能所需的成本,为储能政策的制定提供一定的理论依据。 Different energy inputs exist during the operation of wind-compressed air combined system,which makes the system performance evaluation turn more complicate.To accurately measure the characteristics of storage,release and transfer of the wind,a new method evaluating the energy consumption and economy of the wind-compressed air energy storage system was proposed,on the basis of the second law of thermodynamics and the principle of thermoeconomics.The ratio of wind exergyαand ratio of wind exergy costγwere firstly used in the new method to analyze the energy loss and the cost in charging and discharging wind energy process in detailed when there were different energy sources in the wind-compressed air energy storage system.The results show that the discharging wind energy exergy cost of the wind-compressed air energy storage system was 1.038yuan/(kW·h),while the cost of the wind exergy discharging accounts for 85.71% and this proportion would be increased with the increase of wind power costs and decrease of nature gas prices.Therefore,this study not only supplies the theoretical reference for the future research of analysis methods,but also is a theory basis for energy storage subsidy.
出处 《热力发电》 CAS 北大核心 2016年第2期34-39,共6页 Thermal Power Generation
基金 国家自然科学基金面上项目(51276059) 中央高校基本科研业务专项资金资助项目(2014XS27)
关键词 风力发电 压缩空气储能 联合运行 火用流 火用成本分析 wind power generation compressed air energy storage combined operation exergy stream exergy cost analysis
  • 相关文献

参考文献16

  • 1能源局治理冀蒙吉弃风重灾区去年弃风电量150亿度[N/OL].[2015-04-08].http://news.xinhuanet.com/energy/2014-04/15/c_126390747.htm.
  • 2YANG Z,WANG Z,RAN P,et al.Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power[J].Applied Thermal Engineering,2014,66(1):519-527.
  • 3LUND H.Large-scale integration of wind power into different energy systems[J].Energy,2005,30(13):2402-2412.
  • 4CAVALLO A.Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)[J].Energy,2007,32(2):120-127.
  • 5SWIDER D J.Compressed air energy storage in an electricity system with significant wind power generation[J].IEEE Transactions on Energy Conversion,2007,22(1):95-102.
  • 6YANG Z,WANG Z,RAN P,et al.Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power[J].Applied Thermal Engineering,2014,66(1):519-527.
  • 7BARNES F S,LEVINE J G.Large energy storage systems handbook[J].CRC Press,2011:29.
  • 8GRAZZINI G,MILAZZO A.Thermodynamic analysis of CAES/TES systems for renewable energy plants[J].Renewable Energy,2008,33(9):1998-2006.
  • 9KIM Y M,FAVRAT D.Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system[J].Energy,2010,35(1):213-220.
  • 10KIM Y M,LEE J H,KIM S J,et al.Potential and evolution of compressed air energy storage:energy and exergy analyses[J].Entropy,2012,14(8):1501-1521.

二级参考文献25

  • 1吴瑜之.太阳能光伏发电及其发展[J].江西科技学院学报,2007,4(3):27-32. 被引量:5
  • 2王春明,周强,王金全,朱瑞德.风-光-柴互补供电系统[J].解放军理工大学学报(自然科学版),2005,6(5):474-478. 被引量:16
  • 3杜祥琬.中国可再生能源发展战略研究丛书[M].综合卷.北京:中国电力出版社,2008:11-32.
  • 4McDowall J. Integrating energy storage with wind power in weak electricity grids[J]. Journal of Power Sources, 2006, 162(2).- 959-964.
  • 5Lurid P, Paatero J. Energy storage option for improving wind power quality[C]//Nordic Wind Power Conference, Espoo, Finland, 2006.
  • 6Bueno C, Carta J. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands[J]. Renewable and Sustainable EnergyReviews, 2006, 10(4): 312-340.
  • 7Alfred C. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)[J]. Energy, 2007, 32(2): 120-127.
  • 8Korpaas M, Holen A, Hildrum R. Operation and sizing of energy storage for wind power plants in a market system[J]. Energy Systems, 2003, 25(8): 599-606.
  • 9Greenblatt J, Succar S, Denkenberger D, et al. Baseload wind energy: modelling the competition between gas turbines and compressed air energy storage for supplemental generation[J]. Energy Policy, 2007(35): 1474-1492.
  • 10Hadjipaschalis I, Poullikkas A, Efthimiou V. Overview of current and future energy storage technologies for electric power applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6-7): 1513-1522.

共引文献73

同被引文献243

引证文献17

二级引证文献287

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部