期刊文献+

室温下正己烷本底中PbSe量子点的荧光寿命 被引量:1

Photoluminescence Lifetime of PbSe Quantum Dots Doped in Hexane at Room Temperature
原文传递
导出
摘要 利用透射电镜、近红外吸收谱、荧光光谱和时间分辨光谱等技术,在室温下测量离散在正己烷有机溶剂中,不同粒径的PbSe量子点的吸收谱和荧光谱,给出了第一吸收峰和荧光峰随粒径变化的经验公式。通过对瞬态荧光衰减曲线的测量和分析,得到了PbSe量子点的荧光寿命,其寿命与量子点的表面缺陷有关。在研究的粒径范围内,由于荧光跃迁仅为带间直接跃迁和仅为缺陷态跃迁两种极端情况,可得荧光寿命最宽分布区间位于1.44~11.96μs。荧光寿命弱关联于粒径,并随粒径的增大而呈线性减小。当PbSe量子点的粒径为2.7~5.7nm时,其实测的平均荧光寿命为7.17~6.72μs。 The absorption and photoluminescence (PL) spectra of PbSe quantum dots (QDs) with different sizes and doped in organic solvent-hexane are measured by using the transmission electron microscopy (TEM), near- infrared (NIR) absorption spectroscopy, fluorescence spectroscopy and time-resolved spectroscopy at room temperature. An empirical formula of the first absorption-peak wavelength and PL-peak wavelength varying with the size of QDs are obtained. The PL-lifetimes of PbSe QDs are determined by analyzing transient PL-decay curves. It is shown that the lifetime depends on both the surface defect and the size of QDs. The widest distribution of the lifetime ranges 1.44~11.96 μS, which can be deduced from two extreme conditions, i.e., the PL transition is only a direct interband transition and/or only a defected state transition in the range of particle size used. On the other hand, the PL lifetime is dependent weakly on the size of QDs, it will decrease with the increase of the particel size. As an example, the averaged lifetime is among 7.17~6.72 μS for the QDs diameter in the range of 2.7-5.7 nm.
作者 程成 邵航
出处 《光学学报》 EI CAS CSCD 北大核心 2016年第2期148-154,共7页 Acta Optica Sinica
基金 国家自然科学基金(61274124 61474100)
关键词 材料 PbSe量子点 近红外吸收谱和荧光谱 荧光寿命 粒径 materials PbSe quantum dot infrared absorption-photoluminescence spectra photoluminescence lifetime particle size
  • 相关文献

参考文献17

  • 1X Y Cheng, S B Lowe, J J Gooding, et al.. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio- applications[J]. Chem Soc Rev, 2014, 43(8): 2680-2700.
  • 2O E Semonin, J M Luther, M C Beard. Quantum dots for next generation photovoltaics[J]. Mater Today, 2012,15(11): 508-515.
  • 3M Schmidt, H Haberland. Phase transitions in clusters[J]. C R Phys, 2002, 3(3): 327-340.
  • 4J R Lakowicaz. Principle of Pluorescence Spectroscopy[M]. New York: Academic Press, 1999: 95-163.
  • 5X Y Wang, L H Qu, X G Peng, et al.. Surface-related emission in highly luminescent CdSe quantum dots[J]. Nano Lett, 2003, 3(8): 1103- 1106.
  • 6D Yanover, R Vaxenburg, E Lifshitz, et al.. Significance of small-sized PbSe/PbS core/shell colloidal quantum dots for optoelectronic applications[J]. J Phys Chem C, 2014, 118(30): 17001-17009.
  • 7A Kigel, M Brumer, G Maikov, et al.. Thermally activated photoluminescence in lead selenide colloidal quantum dots[J]. Small, 2009, 5(14): 1675-1681.
  • 8G Zaiats, D Yanover, R Vaxenburg, et al.. PbSe/CdSe thin-shell colloidal quantum dots[J]. Z Phys Chem, 2015, 229(1-2): 3-21.
  • 9V I Kilmov, A Mikgailovsky, S Xu, et al.. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 2000, 290(5490): 314-347.
  • 10V I Kilmov. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor, nanocrystals: implications for lasing and solar energy conversion[J]. J Phys chem B, 2006, 110(34): 16827-16845.

二级参考文献13

  • 1程成,程潇羽.纳米光子学及器件[M].北京:科学出版社,2013.159-166.
  • 2C E Ekuma, D J Singh, J Morenoet, et al..Optical properties of PbTe and PbSe [J].Phys Rev B, 2012, 85(8): 085205.
  • 3P Dey, J Paul, J Bylsma, et al..Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots [J].Solid State Commun, 2013, 165: 49-54.
  • 4R D Schaller, M Sykora, J M Pietryga, et al..Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers [J].Nano Lett, 2006, 6(3): 424-429.
  • 5H Du, C Chen, R Krishnan, et al..Optical properties of colloidal PbSe nanocrystals[J].Nano Lett, 2002, 2(11): 1321-1324.
  • 6M Brumer, M Sirota, A Kigel, et al..Nanocrystals of PbSe core, PbSe/PbS, and PbSe/PbSexS1-x core/shell as saturable absorbers in passively Q-switched near-infrared lasers [J].Appl Opt, 2006, 45(28): 7488-7497.
  • 7Cheng Cheng.A multi-quantum-dot-doped fiber amplifier with characteristics of broadband, flat gain and low noise [J].J Lightwave Technol, 2008, 26(11): 1404-1410.
  • 8A Lipovskii, E Kolobkova, V Petrikov, et al..Synthesis and characterization of PbSe quantum dots in phosphate glass [J].Appl Phys Lett, 1997, 71(23): 3406-3408.
  • 9T Okuno, A A Lipovskii, T Ogawa, et al..Strong confinement of PbSe and PbS quantum dots [J].J Lumines, 2000, 87(89): 491-493.
  • 10P N Prasad.Nanophotonics [M].New York: John Wiley and Sons, 2004.27-38.

共引文献7

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部