期刊文献+

采用多项式递归核的高光谱遥感异常实时检测算法 被引量:12

Real-Time Anomaly Detection Algorithm for Hyperspectral Remote Sensing by Using Recursive Polynomial Kernel Function
原文传递
导出
摘要 高光谱遥感目标检测是遥感信号处理领域的热点问题,基于核机器学习的KRX算法能充分利用高光谱波段间的非线性光谱特性,在原始光谱的特征空间进行探测,能够获得较好的检测效果。针对KRX算法检测过程计算复杂、不能满足快速处理要求的缺陷,引入了卡尔曼滤波器的递归思想,提出了一种核递归的高光谱异常目标检测算法。从光谱分析的角度,应用Woodbury引理从上一时刻的状态迭代更新当前像元的Gram核矩阵,避免了高维矩阵数据重复计算。实验结果表明,与传统RX、因果RX和KRX等算法相比,在检测精度有所提高的同时,大大缩短了算法检测时间,提高了异常目标检测效率。 Hyperspectral target detection is a great deal of attention in the field of remote sensing signal processing. The KRX algorithm based on kernel machine learning can make full use of nonlinear spectral characteristics among hyperspectral bands. Therefore, it can get better detection results in the original spectral feature space. Aimed at the defect that the complexities of KRX algorithm is high in calculating the detection process and unable meet the requirement of rapid processing. A real-time anomaly detection method is proposed based on recursive kernel function. The recursive thought of Kalman filter is introduced, which puts forward a nuclear recursive hyperspectral anomaly target detection algorithm. From the perspective of spectral analysis, with Woodbury's lemma, the kernel matrices can be updated by the kernel matrices of last pixel. It avoids repeat computation of high-dimensional data matrices. Experimental results show that the accuracy of anomaly detection is improved and testing time of the algorithm is reduced at the same time when compared with the traditional RX, causal RX and KRX algorithm.
出处 《光学学报》 EI CAS CSCD 北大核心 2016年第2期257-265,共9页 Acta Optica Sinica
基金 国家自然科学基金(61571145 61405041) 黑龙江省自然科学基金重点项目(ZD201216) 哈尔滨市优秀学科带头人基金项目(RC2013XK009003) 中国博士后基金项目(2014M551221) 中央高校基础研究基金项目(HEUCF1508)
关键词 遥感 高光谱 核机器学习 异常检测 remote sensing hyperspectral kernel machine learning anomaly detection
  • 相关文献

参考文献17

  • 1吴一全,周杨,龙云淋.基于自适应参数支持向量机的高光谱遥感图像小目标检测[J].光学学报,2015,35(9):322-331. 被引量:26
  • 2汤毅,万建伟,粘永健.高光谱图像的分布式近无损压缩[J].光学学报,2015,35(3):71-78. 被引量:6
  • 3王晓飞, 阎秋静, 张钧萍, 等. 基于相关向量机的高光谱图像超分辨率算法[J]. 中国激光, 2014, 41(s1): s114001.
  • 4王晓飞,阎秋静.基于集成学习的高光谱图像一类分类算法[J].光学学报,2014,34(B12):178-182. 被引量:3
  • 5樊利恒,吕俊伟,邓江生.基于分类器集成的高光谱遥感图像分类方法[J].光学学报,2014,34(9):91-101. 被引量:31
  • 6Zhang L, Zhang L, Tao D, et al.. Hyperspectral remote sensing image subpixel target detection based on supervised metric learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4955-4965.
  • 7Yuan Y, Wang Q,Zhu G. Fast Hyperspectral Anomaly Detection via High-Order 2-D Crossing Filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 620-630.
  • 8Reed I S, Yu X L. Fast adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1990, 38(10): 1760-1770.
  • 9Acito N, Matteoli S, Diani M, et al.. Complexity-aware algorithm architecture for real-time enhancement of local anomalies in hyperspectral images[J]. Journal of Real-Time Image Processing, 2013, 8(1): 53-68.
  • 10Wang T, Du B, Zhang L. A kernel-based target-constrained interference-minimized filter for hyperspectral sub-pixel target detection [J]. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 626-637.

二级参考文献41

  • 1路威,余旭初,马永刚,刘娟.高光谱遥感影像海上舰船目标检测算法的研究[J].海洋测绘,2005,25(4):8-12. 被引量:7
  • 2宋枫溪,张大鹏,杨静宇,高秀梅.基于最大散度差鉴别准则的自适应分类算法[J].自动化学报,2006,32(4):541-549. 被引量:17
  • 3贺霖,潘泉,邸韡,赵永强.一种基于单似然检验的高光谱图像小目标检测器[J].光学学报,2007,27(12):2155-2162. 被引量:12
  • 4C S Hernandez, D S Boyd, G M Foody. One-class classification for mapping a specific land-cover class: SVDD classification of {enland [J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 (4) : 1061 -- 1073.
  • 5G Bilgin, S Erturk, T Yildirim. Segmentation of hyperspeetral images via subtractive clustering and cluster validation using one-class support vector machines [J]. IEEE Geoscience and Remote Sensing, 2011, 49(8): 2836--2844.
  • 6P Gurram, H Kwon. Sparse kernel-based hyperspectral anomaly detection [J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5) : 943--947.
  • 7B Cyganek. One-class support vector ensembles for image segmentation and classification [J].Journal of Mathematical Imaging and Vision, 2012, 42(2-3): 103-117.
  • 8D M J Tax, R P W Duin. Support vector data description [J]. Machine Learning, 2004, 54(1) : 45-56.
  • 9L K Hansen, P Salamon. Neural network ensembles [J]. IEEE Pattern Analysis and Machine Intelligence, 1990, 12(10) : 993--1001.
  • 10L Breiman. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123--140.

共引文献58

同被引文献49

引证文献12

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部