期刊文献+

银-光子晶体-银结构中两Tamm等离子体极化激元的耦合

Coupling of Two Tamm Plasmon Polaritons in Ag-photonic Crystal-Ag Structure
原文传递
导出
摘要 利用传输矩阵研究了银-光子晶体-银结构中两Tamm等离子体极化激元(TPPs)的耦合态。我们的数值结果表明当光子晶体的周期数n>10时,存在两本征波长相同的非耦合Tamm等离子体极化激元(非耦合TPPs),当n≤10时,两非耦合Tamm等离子体极化激元发生耦合,劈裂成两本征波长不同的耦合Tamm等离子体极化激元。随着n的减小,两耦合Tamm等离子体极化激元(耦合TPPs)间的劈裂能量增大,当n=3时,劈裂能量达到287.5meV。从银-光子晶体-银结构中的实时电场分布可以得到:本征波长较长的耦合TPP由两非耦合TPPs对称耦合产生,而本征波长较短的耦合TPP由两非耦合TPPs反对称耦合产生。 The coupled states of two Tamm Plasmon Polaritons(TPPs)in Ag-photonic crystal-Ag(Ag-PCAg)were studied by transfer matrix method.Our numerical results indicated that when the period number of photonic crystal n10,there were two uncoupled Tamm plasmon polaritons(uncoupled TPPs)with the same eigenwavelength.Two uncoupled TPPs couple,splitting into two coupled Tamm plasmon polaritons(coupled TPPs)with different eigenwavelength when n≤10.The splitting energy between two coupled TPPs increased with the decrease of n,and reached 287.5 meV when n=3.From the distribution of real part of electric field in the Ag-PC-Ag structure,it can be concluded that the coupled TPP with longer eigenwavelength originates in symmetric coupling between two uncoupled TPPs,while the coupled TPP with shorter eigenwavelength originates in asymmetric coupling between two uncoupled TPPs.
出处 《量子光学学报》 北大核心 2016年第1期88-92,共5页 Journal of Quantum Optics
基金 国家自然科学基金(61107055)
关键词 非耦合Tamm等离子体极化激元(非耦合TPP) 耦合Tamm等离子体极化激元(耦合TPP) 传输矩阵 对称耦合 反对称耦合 uncoupled Tamm plasmon polariton(uncoupled TPP) coupled Tam plasmon polariton(coupled TPP) transfer matrix symmetric coupling asymmetric coupling
  • 相关文献

参考文献9

  • 1Kaliteevski M,Iorsh I,Brand S,et al.Tamm Plasmon-polaritons:Possible Electromagnetic States at the Interface of a Metal and a Dielectric Bragg Mirror[J].Phys Rev B,2007,76(16):165415-1-165415-5.DOI:10.1103/PhysRevB.76.165415.
  • 2Zhang W L,Yu S F.Bistable Switching Using An Optical Tamm Cavity with a Kerr Medium[J].Opt Commun,2010,283:2622-2626.DOI:10.1016/j.optcom.2010.02.035.
  • 3Zhang W L,Jiang Y,Zhu Y Y,et al.All-optical Bistable Logic Control Based on Coupled Tamm Plasmons[J].Opt Lett,2013,38(20):4092-4095.DOI:10.1364/OL.38.004092.
  • 4Zhang W L.,Wang F,Jiang Y,et al.Novel Sensing Concept Based on Optical Plasmon[J].Opt Express,2014,22(20):14524-14529.DOI:10.1364/OE.22.014524.
  • 5Gong Y K,Liu X M,Lu H,et al.Perfect Absorber Supported by Optical Tamm States in Plasmonic Waveguide[J].Opt Express,2011,19(19):18393-18398.DOI:10.1364/OE.19.018393.
  • 6Brückner R,Sudzius M,Hintschich S I,et al.Hybird Optical Tamm States in a Planar Dielectric Microcavity[J].Phys Rev B,2011,83(3):033405-1-033405-4.DOI:10.1103/PhysRevB.83.033405.
  • 7Kaliteevski M,Brand S,Abram R A,et al.Hybird States of Tamm Plasmons and Exciton Polaritons[J].Appl Phys Lett,2009,95(25):251108-1-251108-3.DOI:10.1063/1.3266841.
  • 8Zhang W L,Rao Y J.Optical Tamm State Polaritons in a Quantum Well Microcavity with Gold Layers[J].Chin Phys B,2012,21(5):057107-1-057107-5.DOI:10.1088/1674-1056/21/5/057107.
  • 9Kavokin A,Shelykh I,Malpuech G.Optical Tamm States for the Fabrication of Polariton Lasers[J].Appl Phys Lett,2005,87(26):261105-1-261105-3.DOI:10.1063/1.2136414.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部