期刊文献+

A Recursive Basis for Primitive Forms in Symplectic Spaces and Applications to Heisenberg Groups

A Recursive Basis for Primitive Forms in Symplectic Spaces and Applications to Heisenberg Groups
原文传递
导出
摘要 This paper is divided in two parts: in Section 2, we define recursively a privileged basis of the primitive forms in a symplectic space(V^(2n), ω). Successively, in Section 3, we apply our construction in the setting of Heisenberg groups H^n, n ≥ 1, to write in coordinates the exterior differential of the so-called Rumin's complex of differential forms in H^n. This paper is divided in two parts: in Section 2, we define recursively a privileged basis of the primitive forms in a symplectic space(V^(2n), ω). Successively, in Section 3, we apply our construction in the setting of Heisenberg groups H^n, n ≥ 1, to write in coordinates the exterior differential of the so-called Rumin's complex of differential forms in H^n.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第3期265-285,共21页 数学学报(英文版)
基金 Supported by University of Bologna funds for selected research topics supported by the Gruppo Nazionale per l’Analisi Matematica,la Probabilita e le loro Applicazioni(GNAMPA)of the Istituto Nazionale di Alta Matematica(INdA M) supported by P.R.I.N.of M.I.U.R.,Italy
关键词 Symplectic manifolds differential forms Heisenberg groups combinatorial functions Symplectic manifolds, differential forms, Heisenberg groups, combinatorial functions
  • 相关文献

参考文献20

  • 1Baldi, A., Franchi, B., Tripaldi, F.: Gagliardo-Nirenberg inequalities for horizontal vector fields in the Engel group and in the 7-dimensional quaternionic Heisenberg group. In: Geometric Methods in PDEs, volume 13 of Springer INdAM Ser., DOI: 10.1007/978-3-319-02666-4_16, pages 287-312, Springer, 2015.
  • 2Baldi, A., Franchi, B.: Sharp a priori estimates for div-curl systems in Heisenberg groups. J. Funct. Anal., 265(10), 2388-2419 (2013).
  • 3Baldi, A., Franchi, B., Tchou, N., et al.: Compensated compactness for differential forms in Carnot groups and applications. Adv. Math., 223(5), 1555-1607 (2010).
  • 4Bourgain, J., Brezis, H.: New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. (JEMS), 9(2), 277-315 (2007).
  • 5Federer, H.: Geometric measure theory. In: Die Grundlehren der Mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.
  • 6Franchi, B., Serap.ioni, R., Serra Cassano, F.: Regular submanifolds, graphs and area formula in Heisenberg groups. Adv. Math., 211(1), 152-203 (2007).
  • 7Gromov, M.: Carnot-Carathaodory spaces seen from within. In: Sub-Riemannian Geometry, vol. 144 of Progr. Math., Birkhauser, Basel, 1996, 79-323.
  • 8Huybrechts, D.: Complex geometry- An Introduction, Universitext, Springer-Verlag, Berlin, 2005.
  • 9Lanzani, L., Stein, E. M.: A note on div curl inequalities. Math. Res. Left., 12(1), 57-61 (2005).
  • 10Rumin, M.: Formes differentielles sur les variatas de contact. J. Differential Geom., 39(2), 281-330 (1994).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部