摘要
The relation among transitivity, indecomposability and Z-transitivity is discussed. It is shown that for a non-wandering system (each point is non-wandering), indecomposability is equivalent to transitivity, and for the dynamical systems without isolated points, Z-transitivity and transitivity are equivalent. Besides, a new transitive level as weak transitivity is introduced and some equivalent conditions of Devaney's chaos are given by weak transitivity. Moreover, it is proved that both d- shadowing property and d-shadowing property imply weak transitivity.
The relation among transitivity, indecomposability and Z-transitivity is discussed. It is shown that for a non-wandering system (each point is non-wandering), indecomposability is equivalent to transitivity, and for the dynamical systems without isolated points, Z-transitivity and transitivity are equivalent. Besides, a new transitive level as weak transitivity is introduced and some equivalent conditions of Devaney's chaos are given by weak transitivity. Moreover, it is proved that both d- shadowing property and d-shadowing property imply weak transitivity.
基金
Supported by National Natural Science Foundation of China(Grant No.11261039)
National Natural Science Foundation of Jiangxi Province(Grant No.20132BAB201009)