期刊文献+

Non-Nehari Manifold Method for Periodic Discrete Superlinear Schr(o|¨)dinger Equation

Non-Nehari Manifold Method for Periodic Discrete Superlinear Schr(o|¨)dinger Equation
原文传递
导出
摘要 We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real valued N-periodic sequences,and f(n,t) is superlinear on t.Inspired by previous work of Pankov[Discrete Contin.Dyn.Syst.,19,419-430(2007)]and Szulkin and Weth[J.Funct.Anal.,257,3802-3822(2009)],we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f.Unlike the Nehari manifold method,the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method. We consider the nonlinear difference equations of the form Lu=f(n,u),n∈Z,where L is a Jacobi operator given by(Lu)(n)=a(n)u(n+1)+a(n-1)u(n-1)+b(n)u(n) for n ∈Z,{a(n)} and {b(n)} are real valued N-periodic sequences,and f(n,t) is superlinear on t.Inspired by previous work of Pankov[Discrete Contin.Dyn.Syst.,19,419-430(2007)]and Szulkin and Weth[J.Funct.Anal.,257,3802-3822(2009)],we develop a non-Nehari manifold method to find ground state solutions of Nehari-Pankov type under weaker conditions on f.Unlike the Nehari manifold method,the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold by using the diagonal method.
作者 Xian Hua TANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第4期463-473,共11页 数学学报(英文版)
基金 Supported by NSFC(Grant No.11571370) the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120162110021)of China
关键词 Discrete nonlinear Schrodinger equation non-Nehari manifold method SUPERLINEAR ground state solutions of Nehari-Pankov type Discrete nonlinear Schrodinger equation non-Nehari manifold method superlinear ground state solutions of Nehari-Pankov type
  • 相关文献

参考文献4

二级参考文献35

  • 1郭志明,庾建设.Existence of periodic and subharmonic solutions for second-order superlinear difference equations[J].Science China Mathematics,2003,46(4):506-515. 被引量:55
  • 2ZHOU Zhan 1, YU JianShe 1 & CHEN YuMing 21 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China,2 Department of Mathematics, Wilfrid Laurier University, Waterloo N2L 3C5, Canada.Periodic solutions of a 2nth-order nonlinear difference equation[J].Science China Mathematics,2010,53(1):41-50. 被引量:10
  • 3A. V. Gorbach,M. Johansson.Gap and out-gap breathers in a binary modulated discrete nonlinear Schr?dinger model[J]. The European Physical Journal D . 2004 (1)
  • 4G. Bruno,A. Pankov,Yu. Tverdokhleb.On Almost-Periodic Operators in the Spaces of Sequences[J]. Acta Applicandae Mathematicae . 2001 (1-3)
  • 5James.Centre Manifold Reduction for Quasilinear Discrete Systems[J]. Journal of Nonlinear Science . (1)
  • 6Sukhorukov A A,Kivshar Y S.Generation and stability of discrete gap solitons. Optics Letters . 2003
  • 7Zhou Z,Yu J.On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems. J Di?erential Equations . 2010
  • 8Aubry S.Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems. Physica D Nonlinear Phenomena . 2006
  • 9Cuevas J,Kevrekidis P G,Frantzeskakis D J, et al.Discrete solitons in nonlinear Schro¨dinger lattices with a power-law nonlinearity. Physica D Nonlinear Phenomena . 2009
  • 10Flach S,Gorbach A V.Discrete breathers—advance in theory and applications. Physics Reports . 2008

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部