期刊文献+

High contrast amplification at 1053 nm limited by pulse stretching-compressing process

High contrast amplification at 1053 nm limited by pulse stretching-compressing process
原文传递
导出
摘要 We report on our high-contrast laser based on high-contrast, high-energy seed injection, low-gain optical para- metric chirped pulse amplification (OPCPA), and Nd:glass amplifiers, which can be used as the high-contrast front end of a high-power Nd:glass chirped pulse amplification (CPA) laser system. The energy of the stretched 1053 nm high-contrast seed pulse increases to 60 DJ by optimizing the frequency doubling crystal in the pulse cleaning device. After passing through a two-stage low-gain OPCPA, a 2-pass 2-rod Nd:glass amplifier, and a compressor the amplified pulse of 131 mJ/282 fs is achieved. The third-order correlation scanning measurement shows that the pulse contrast in the tens of ps range is about 10^-7-10^-8. With the high-contrast seed passing through the stretcher and compressor only, the contrast measurement indicates that the stretching-compressing process leads mainly to the contrast degradation of the amplified pulse. We report on our high-contrast laser based on high-contrast, high-energy seed injection, low-gain optical para- metric chirped pulse amplification (OPCPA), and Nd:glass amplifiers, which can be used as the high-contrast front end of a high-power Nd:glass chirped pulse amplification (CPA) laser system. The energy of the stretched 1053 nm high-contrast seed pulse increases to 60 DJ by optimizing the frequency doubling crystal in the pulse cleaning device. After passing through a two-stage low-gain OPCPA, a 2-pass 2-rod Nd:glass amplifier, and a compressor the amplified pulse of 131 mJ/282 fs is achieved. The third-order correlation scanning measurement shows that the pulse contrast in the tens of ps range is about 10^-7-10^-8. With the high-contrast seed passing through the stretcher and compressor only, the contrast measurement indicates that the stretching-compressing process leads mainly to the contrast degradation of the amplified pulse.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第2期88-92,共5页 中国光学快报(英文版)
关键词 AMPLIFICATION Chirp modulation Frequency doublers GLASS Laser optics Ultrashort pulses Amplification Chirp modulation Frequency doublers Glass Laser optics Ultrashort pulses
  • 相关文献

参考文献31

  • 1D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).
  • 2J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett.35, 3021 (2010).
  • 3M. Perry, D. Pennington, B. Stuart, G. Tietbohl, J. Britten,C. Brown, S. Herman, B. Golick, M. Kartz, and J. Miller, Opt. Lett.24, 160 (1999).
  • 4X. Liang, Y. Leng, C. Wang, C. Li, L. Lin, B. Zhao, Y. Jiang, X. Lu, M. Hu, and C. Zhang, Opt. Express 15, 15335 (2007).
  • 5E. W. Gaul, M. Martinez, J. Blakeney, A. Jochmann, M. Ringuette,D. Hammond, T. Borger, R. Escamilla, S. Douglas, and W. Henderson, Appl. Opt. 49, 1676 (2010).
  • 6C. Danson, P. Brummitt, R. Clarke, J. Collier, B. Fell, A. Frackiewicz, S. Hancock, S. Hawkes, C. Hernandez-Gomez, and P. Holligan, Nucl. Fusion 44, $239 (2004).
  • 7G. Doumy, F. Quere, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. Gauthier, J.-P. Geindre, and T. Wittmann, Phys. Rev. E 69, 026402 (2004).
  • 8C. Danson, D. Neely, and D. Hillier, High Power Laser Sci. Eng. 2, e34 (2014).
  • 9J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, Opt. Commun. 148, 70 (1998).
  • 10A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Auge-Rochereau, G. Cheriaux, J. Etchepare, and N. Minkovski, Opt. Lett. 30, 920 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部