期刊文献+

光照不均条件下的钢管图像分割算法研究 被引量:8

The research of steel image segmentation algorithm under conditions of uneven illumination
下载PDF
导出
摘要 针对传统的全局阈值分割算法在复杂背景下分割不足的缺点以及传统局部动态阈值分割灰度不连续的缺点,在传统局部动态阈值算法的基础上进行了改进。该算法先求取每一局部子图像的阈值,再利用子图像的阈值求取局部动态阈值,最后用求得的局部动态阈值来求取所有图像像素的阈值。用此方法来分割大量无序堆放的钢管图像,实验表明,这种改进算法和几种传统算法比较,能够更精确地分割受光不均及多阴影的复杂背景图像,为后续统计钢管数量的工作奠定了基础。使得图像中钢管的识别率有了明显的提高,接近96%。 In view of the faults of the segmentation is insufficient using traditional global threshold segmentation al- gorithm under complex background and the shortcoming of traditional local dynamic threshold segmentation grey discon- tinuous, based on the traditional local dynamic threshold algorithm. The improved algorithm to calculate each local sub -image threshold, and then using the sub-image threshold to calculate the local dynamic threshold, Finally, local dy- namic threshold was obtained to be used to calculate the threshold values for all image pixels. Using this method to segment a large number of disorderly stacked steel pipe image, the experimental results show that the improved algo- rithm can more accurately segment images under uneven light and multi shadow of complex background compared with several traditional algorithms, which lay the foundation for subsequent work of steel pipe statistics, making that the im- age recognition rate of steel has been significantly improved, close to 96%.
出处 《激光杂志》 北大核心 2016年第3期46-49,共4页 Laser Journal
基金 陕西省教育厅科学研究计划项目资助(2013JK1188) 陕西省教育厅专项科研计划项目(12JK0787)
关键词 阈值 动态阈值 光照不均 图像分割 插值 threshold dynamic threshold uneven illumination image segmentation interpolation
  • 相关文献

参考文献9

二级参考文献47

  • 1范铭,崔艳,张华.一种改进的粘连细胞分割方法[J].广西物理,2008,29(1):21-24. 被引量:1
  • 2杨晖.图像分割的阈值法研究[J].辽宁大学学报(自然科学版),2006,33(2):135-137. 被引量:45
  • 3王斌,吕科.数字图像二值化波形分析法探究[J].青海师范大学学报(自然科学版),2007,23(1):8-12. 被引量:3
  • 4高民,郭国营,王翔,刘殿权,李光民.基于数字图像处理技术的棒材计数问题的研究与分析[J].河南冶金,2007,15(3):28-29. 被引量:3
  • 5Sezgin M.Sankur B.Survey over image thresholding techniques and quantitative peHormance evaluation[J].Journal of Electronic Imaging,2004,13(1):146-168.
  • 6Otsu N.A threshold selection method from graylevel histograms[J].IEEE Transactions on System Man and Cybernetic,1979.9(1):62-66.
  • 7Huifuang N G.Automatic thresholding for defect detection[J].Pattern Recognition Letters,2006,27(14):1644-1649.
  • 8Zhou H.Hu Q.Nowinski W L.On minimum variance thresholding[J].Pattern Recognition Letters,2006,27(14):1732-1743.
  • 9Hu Qing-Mao,Hou Zu-Jun.Wieslawl N.Supervised rangeconstrained thresholding[J].IEEE Transactions on Image Processing,2006,15(1):228-240.
  • 10章毓晋.图像分割[M].北京:科学出版社,2001..

共引文献38

同被引文献81

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部