期刊文献+

Volterra级数与神经网络的光纤传感器网络故障诊断 被引量:4

Fault diagnosis of optical fiber sensor network with Volterra series and neural network
下载PDF
导出
摘要 故障诊断准确性直接影响光纤传感器网络的应用价值,为了改善光纤传感器网络故障的诊断性能,本文提出了一种Volterra级数和神经网络的光纤传感器网络故障诊断方法。首先采用Volterra级数提取光纤传感器故障的信号特征,然后采用神经网络中的相关向量机对光纤传感器特征进行学习,建立光纤传感器故障诊断识别器,最后通过具体光纤传感器网络对其性能进行仿真测试。结果表明,本文方法能够分析光纤传感器网络的故障特征,较好完成了光纤传感器网络的故障诊断,而且结果要优于其他光纤传感器故障诊断方法。 Fault diagnosis accuracy directly affects the application value of optical fiber sensor network. In order to improve the performance of optical fiber sensor network fault diagnosis, this paper proposed a fault diagnosis method for optical fiber sensor networks with Volterra series and neural network. Volterra series is used to extract signal character-- istics of fiber optic sensor fault, and relevance vector the optical fiber sensor, and the fault diagnosis model machine in neural network is used to study the characteristics of of the optical fiber sensor is established, finally, the simulation test is carried out by some optical fiber sensor network data. The results show that the method in this paper can be used to analyze the fault characteristics and can complete the fault diagnosis of the optical fiber sensor network, and the results are better than other optical fiber sensor fault diagnosis method.
作者 孙海梦
出处 《激光杂志》 北大核心 2016年第3期103-106,共4页 Laser Journal
基金 集美大学诚毅学院横向课题(HX150012015)
关键词 光纤传感器 故障诊断 VOLTERRA级数 提取特征 神经网络 optical fiber sensor fault diagnosis voherra series feature extraction neural network
  • 相关文献

参考文献19

  • 1唐晋生,黄雪梅,盛克敏,杨儒贵.激光光纤传感器在地震预报中的应用[J].激光杂志,2002,23(1):73-74. 被引量:4
  • 2李洁,严高师.测量CO浓度的光纤传感器[J].激光与光电子学进展,2006,43(1):46-48. 被引量:7
  • 3李东旭,周正仙.分布式光纤传感器在数字油田应用中的研究进展[J].激光杂志,2014,35(3):1-2. 被引量:15
  • 4Kapoor N, Bhatia N, Kumar S, et al. Wireless Sensor Net- works: A Profound Technology [ J ]. International Journal on Computer Science and Technology, 2011, 2 ( 2 ) : 211 - 215.
  • 5何慧灵,赵春梅,陈丹,赵晓峰,阮昊.光纤传感器现状[J].激光与光电子学进展,2004,41(3):39-41. 被引量:32
  • 6Gankotiya A K, Agarwal S, Verma T. An Investigation of Wireless Sensor Network: A Distributed Approach in Smart Environment [ C ]. Haryana: IEEE Press, Proc of 2012 Sec- ond International Conference on Advanced Computing & Communication Technologies, 2012,522-529.
  • 7陈继宣,龚华平,张在宣.光纤传感器的工程应用及发展趋势[J].光通信技术,2009,33(10):38-40. 被引量:30
  • 8Krishnamachari B, Iyengar S. Distributed Bayesian Algo- rithms for Fault-Tolerant Event Region Detection in Wire- less Sensor Networks [ J]. IEEE Transactions on Comput- ers, 2004, 53(3) : 241-250.
  • 9Behnke R, Salzmann J, Simanowski S, et al. Efficient lo- calized detection of erroneous nodes (ELDEN) [ C]. Brad- ford: IEEE Press: Proc of 2010 10th IEEE International Conference on Computer and Information Technology, 2010, 2884-289.
  • 10Yao Bo, Chen Qing Chun. On the Temporal-Spatial Corre- lation Based Fault-Tolerant Dynanlic Event Region Detec- tion Scheme in Wireless Sensor Networks [ C ]. Beijing: Springer, In Proc of 3rd International Conference on Mobile Ad-hoc and Sensor Networks, 2007,511-523.

二级参考文献109

共引文献181

同被引文献53

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部